OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 36, Iss. 6 — Mar. 15, 2011
  • pp: 1026–1028

Complex coupled-mode theory for tapered optical waveguides

Jianwei Mu and Wei-Ping Huang  »View Author Affiliations


Optics Letters, Vol. 36, Issue 6, pp. 1026-1028 (2011)


View Full Text Article

Enhanced HTML    Acrobat PDF (313 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A coupled-mode formulation based on complex local modes is developed for tapered and longitudinally varying optical waveguides. Different from the conventional coupled-mode theory that requires integration over the entire spectrum of radiation modes, the new formulation treats the radiation fields via discrete complex modes similarly to the guided modes. Accuracy, convergence, and scope of validity for the solutions of the complex coupled-mode equations are investigated in detail for a typical single-mode waveguide taper. It is demonstrated that the complex coupled-mode theory has overcome the difficulties of the conventional theory in simulation of radiation field effects while preserving the simplicity and intuitiveness of this popular method.

© 2011 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(130.0130) Integrated optics : Integrated optics

ToC Category:
Integrated Optics

History
Original Manuscript: January 4, 2011
Revised Manuscript: February 14, 2011
Manuscript Accepted: February 15, 2011
Published: March 15, 2011

Citation
Jianwei Mu and Wei-Ping Huang, "Complex coupled-mode theory for tapered optical waveguides," Opt. Lett. 36, 1026-1028 (2011)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-6-1026


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Yanagawa, T. Shimizu, S. Nakamura, and I. Ohyama, J. Lightwave Technol. 10, 587 (1992). [CrossRef]
  2. O. Mitomi, K. Kasaya, and H. Miyazawa, IEEE J. Quantum Electron. 30, 1787 (1994). [CrossRef]
  3. J. Haes, J. Willems, and R. Bates, Proc. SPIE 2212, 685 (1994). [CrossRef]
  4. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proc. J. Optoelectron. 138, 343 (1991). [CrossRef]
  5. D. Marcuse, Bell Syst. Tech. J. 49, 273 (1970).
  6. A. R. Nelson, Appl. Opt. 14, 3012 (1975). [PubMed]
  7. J. A. Fleck, J. R. Morris, and M. D. Feit, Appl. Phys. 10, 129 (1976). [CrossRef]
  8. T. Nakamura and N. Suzuki, IEEE Photonics Technol. Lett. 12, 143 (2000). [CrossRef]
  9. C. T. Lee, M. L. Wu, L. G. Sheu, P. L. Fan, and J. M. Hsu, J. Lightwave Technol. 15, 403 (1997). [CrossRef]
  10. P. G. Suchoski, Jr. and R. Ramaswamy, J. Opt. Soc. Am. A 3, 194 (1986). [CrossRef]
  11. P. G. Suchoski, Jr. and R. Ramaswamy, IEEE J. Quantum Electron. QE-23, 205 (1987). [CrossRef]
  12. D. Marcuse, Theory of Dielectric Optical Waveguides(Academic, 1974).
  13. A. W. Snyder, IEEE Trans. Microwave Theory Tech. 18, 383 (1970). [CrossRef]
  14. A. F. Milton and W. K. Burns, IEEE J. Quantum Electron. 13, 828 (1977). [CrossRef]
  15. W. Huangand J. Mu, Opt. Express 17, 19134 (2009). [CrossRef]
  16. Y. C. Lu and W. P. Huang, Opt. Express 18, 713 (2010). [CrossRef] [PubMed]
  17. N. Song, J. Mu, and W. Huang, J. Lightwave Technol. 28, 761 (2010). [CrossRef]

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited