OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 6 — Mar. 15, 2011
  • pp: 906–908

Fundamental frequency noise properties of extended cavity erbium fiber lasers

G. A. Cranch and G. A. Miller  »View Author Affiliations

Optics Letters, Vol. 36, Issue 6, pp. 906-908 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (285 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A multimode linear cavity and a single-mode unidirectional ring cavity fiber laser with meter-long cavity lengths are shown to exhibit frequency noise limited by fundamental thermodynamic noise from 100 Hz to 100 kHz . Their measured spectra agree closely with theoretically derived thermodynamic noise and the characteristic dependence of the frequency noise power spectrum on the inverse of the cavity length is observed. The unidirectional ring laser exhibits a frequency noise of 2 Hz / Hz 1 / 2 at 1 kHz , one of the lowest published values to date from a free-running laser. The multimode linear cavity laser is shown to be a suitable candidate for thermal-noise-limited, meter-long fiber laser strain sensors with a strain resolution of 14 f ϵ / Hz 1 / 2 at 1 kHz .

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3560) Lasers and laser optics : Lasers, ring
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 6, 2011
Manuscript Accepted: February 4, 2011
Published: March 9, 2011

G. A. Cranch and G. A. Miller, "Fundamental frequency noise properties of extended cavity erbium fiber lasers," Opt. Lett. 36, 906-908 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Heurs, V. M. Quetschke, B. Willke, K. Danzmann, and I. Freitag, Opt. Lett. 29, 2148 (2004). [CrossRef] [PubMed]
  2. G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, IEEE Sens. J. 8, 1161 (2008). [CrossRef]
  3. O. Svelto, Principles of Lasers, 4th ed. (Plenum, 1999), Section 7.9.
  4. R. E. Bartolo, A. Tveten, and C. K. Kirkendall, Proc. SPIE 7503, 750370 (2009). [CrossRef]
  5. K. H. Wanser, Electron. Lett. 28, 53 (1992). [CrossRef]
  6. S. Foster, A. Tikhomirov, and M. Milnes, IEEE J. Quantum Electron. 43, 378 (2007). [CrossRef]
  7. S. Foster, Phys. Rev. A 78, 013820 (2008). [CrossRef]
  8. S. Foster, G. A. Cranch, and A. Tikhomirov, Phys. Rev. A 79, 053802 (2009). [CrossRef]
  9. Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Lambing, and D. N. Payne, Opt. Lett. 20, 875 (1995). [CrossRef] [PubMed]
  10. J. U. de Arruda and J. Blake, Opt. Lett. 23, 1179 (1998) [CrossRef]
  11. K. P. Koo and A. D. Kersey, J. Lightwave Technol. 13, 1243 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited