OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 6 — Mar. 15, 2011
  • pp: 924–926

Intense short-pulse lasers irradiating wire and hollow plasma fibers

C. T. Zhou, X. T. He, and L. Y. Chew  »View Author Affiliations

Optics Letters, Vol. 36, Issue 6, pp. 924-926 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (412 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



When an intense laser pulse irradiates a solid-density foil target, electrons produced at the relativistic critical density can be accelerated to relativistic energy by the ponderomotive force. When a plasma fiber is attached to the back of the foil, the produced relativistic electrons are guided to propagate along the fiber for a long distance, because the high-current electron beam induces strong radial electric fields in the fiber. Transport and heating of intense laser-driven relativistic electrons in both wire and hollow plasma fibers are compared theoretically and numerically. We found that the coupling efficiency from the laser to the plasma fiber depends on the fiber structure. Because of the enhanced return currents in the wire fiber, the temperature in the wire fiber is higher than that in the hollow fiber.

© 2011 Optical Society of America

OCIS Codes
(320.7140) Ultrafast optics : Ultrafast processes in fibers
(350.4990) Other areas of optics : Particles
(350.5400) Other areas of optics : Plasmas

ToC Category:
Ultrafast Optics

Original Manuscript: November 23, 2010
Revised Manuscript: February 6, 2011
Manuscript Accepted: February 7, 2011
Published: March 10, 2011

C. T. Zhou, X. T. He, and L. Y. Chew, "Intense short-pulse lasers irradiating wire and hollow plasma fibers," Opt. Lett. 36, 924-926 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Hasegawa and M. Matsumoto, Optical Solitons in Fibers (Springer-Verlag, 2003).
  2. S. Bahk, P. Rousseau, T. Planchon, V. Chvykov, G. Kalinchenko, A. Maksimchuk, G. Mourou, and V. Yanovsky, Opt. Lett. 29, 2837 (2004). [CrossRef]
  3. H. Hora, J. Badziak, F. P. Boody, R. Hopfl, K. Jungwirth, B. Kralikova, J. Krasa, L. Laska, P. Parys, V. Perina, M. Pfeifer, K. Rohlena, J. Skala, J. Ullschmied, J. Wolowski, and E. Woryna, Opt. Commun. 207, 333 (2002). [CrossRef]
  4. J. Zhang, E. E. Fill, Y. Li, D. Schlögl, J. Steingruber, M. Holden, G. J. Tallents, A. Demir, P. Zeitoun, C. Danson, P. A. Norreys, F. Walsh, M. H. Key, C. L. Lewis, and A. G. McPhee, Opt. Lett. 21, 1035 (1996). [CrossRef] [PubMed]
  5. P. A. Norreys, Nat. Photon. 3, 423 (2009). [CrossRef]
  6. C. T. Zhou and X. T. He, Opt. Lett. 32, 2444 (2007). [CrossRef] [PubMed]
  7. C. T. Zhou, L. Y. Chew, and X. T. He, Appl. Phys. Lett. 97, 051502 (2010), and references therein. [CrossRef]
  8. C. T. Zhou, X. G. Wang, S. Z. Wu, H. B. Cai, F. Wang, and X. T. He, Appl. Phys. Lett. 97, 201502 (2010). [CrossRef]
  9. J. Meyer-ter-Vehn, Plasma Phys. Control. Fusion 51, 124001 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited