OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 36, Iss. 6 — Mar. 15, 2011
  • pp: 957–959

Two-color-laser-driven direct electron acceleration in infinite vacuum

Liang Jie Wong and Franz X. Kärtner  »View Author Affiliations


Optics Letters, Vol. 36, Issue 6, pp. 957-959 (2011)
http://dx.doi.org/10.1364/OL.36.000957


View Full Text Article

Enhanced HTML    Acrobat PDF (954 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a direct electron acceleration scheme that uses a two-color pulsed radially polarized laser beam. The two-color scheme achieves electron acceleration exceeding 90% of the theoretical energy gain limit, over twice of what is possible with a one-color pulsed beam of equal total energy and pulse duration. The scheme succeeds by exploiting the Gouy phase shift to cause an acceleration-favoring interference of fields only as the electron enters its effectively final accelerating cycle. Optimization conditions and power scaling characteristics are discussed.

© 2011 Optical Society of America

OCIS Codes
(320.7090) Ultrafast optics : Ultrafast lasers
(350.4990) Other areas of optics : Particles
(350.5400) Other areas of optics : Plasmas
(020.2649) Atomic and molecular physics : Strong field laser physics

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: December 7, 2010
Revised Manuscript: February 7, 2011
Manuscript Accepted: February 10, 2011
Published: March 11, 2011

Citation
Liang Jie Wong and Franz X. Kärtner, "Two-color-laser-driven direct electron acceleration in infinite vacuum," Opt. Lett. 36, 957-959 (2011)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-6-957

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited