OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 7 — Apr. 1, 2011
  • pp: 1095–1097

Optical analogue of the spin Hall effect in a photonic cavity

Maria Maragkou, Caryl E. Richards, Tomas Ostatnický, Alastair J. D. Grundy, Joanna Zajac, Maxime Hugues, Wolfgang Langbein, and Pavlos G. Lagoudakis  »View Author Affiliations

Optics Letters, Vol. 36, Issue 7, pp. 1095-1097 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (335 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We observe anisotropy in the polarization flux generated in a GaAs/AlAs photonic cavity by optical illumination, equivalent to spin currents in strongly coupled microcavities. Polarization rotation of the scattered photons around the Rayleigh ring is due to the TE–TM splitting of the cavity mode. Resolving the circular polarization components of the transmission reveals a separation of the polarization flux in momentum space. These observations constitute the optical analogue of the spin Hall effect.

© 2011 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(290.5870) Scattering : Scattering, Rayleigh
(350.5500) Other areas of optics : Propagation
(240.3695) Optics at surfaces : Linear and nonlinear light scattering from surfaces

ToC Category:
Physical Optics

Original Manuscript: January 12, 2011
Manuscript Accepted: February 4, 2011
Published: March 18, 2011

Maria Maragkou, Caryl E. Richards, Tomas Ostatnický, Alastair J. D. Grundy, Joanna Zajac, Maxime Hugues, Wolfgang Langbein, and Pavlos G. Lagoudakis, "Optical analogue of the spin Hall effect in a photonic cavity," Opt. Lett. 36, 1095-1097 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. I. Dyakonov and V. I. Perel, Phys. Lett. A 35, 459 (1971). [CrossRef]
  2. Y. Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Science 306, 1910 (2004). [CrossRef] [PubMed]
  3. J. J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, Phys. Rev. Lett. 94, 047204 (2005). [CrossRef] [PubMed]
  4. H. Zhao, E. J. Loren, H. M. van Driel, and A. L. Smirl, Phys. Rev. Lett. 96, 246601 (2006). [CrossRef] [PubMed]
  5. C. Leyder, M. Romanelli, J. Ph. Karr, E. Giacobino, T. C. H. Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, and A. Bramati, Nat. Phys. 3, 628 (2007). [CrossRef]
  6. A. Amo, T. C. H. Liew, C. Adrados, E. Giacobino, A. V. Kavokin, and A. Bramati, Phys. Rev. B 80, 165325(2009). [CrossRef]
  7. T. C. H. Liew, C. Leyder, A. V. Kavokin, A. Amo, J. Lefrère, E. Giacobino, and A. Bramati, Phys. Rev. B 79, 125314 (2009). [CrossRef]
  8. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Phys. Rev. Lett. 69, 3314 (1992). [CrossRef] [PubMed]
  9. A. Kavokin, G. Malpuech, and M. Glazov, Phys. Rev. Lett. 95, 136601 (2005). [CrossRef] [PubMed]
  10. A. Kavokin, P. G. Lagoudakis, G. Malpuech, and J. J. Baumberg, Phys. Rev. B 67, 195321 (2003). [CrossRef]
  11. K. V. Kavokin, I. A. Shelykh, A. V. Kavokin, G. Malpuech, and P. Bigenwald, Phys. Rev. Lett. 92, 017401 (2004). [CrossRef] [PubMed]
  12. G. Panzarini, L. C. Andreani, A. Armitage, D. Baxter, M. S. Skolnick, V. N. Astratov, J. S. Roberts, A. V. Kavokin, M. R. Vladimirova, and M. A. Kaliteevski, Phys. Rev. B 59, 5082 (1999). [CrossRef]
  13. M. Z. Maialle, E. A. de Andrada e Silva, and L. J. Sham, Phys. Rev. B 47, 15776 (1993). [CrossRef]
  14. J. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999). [CrossRef]
  15. A. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Oxford University Press, 2007). [CrossRef]
  16. The values used in the formula are LDBR=764.66 nm, LC=235 nm, n0=2.88, and |Δ|=2 meV (experimentally measured).
  17. W. Langbein, I. Shelykh, D. Solnyshkov, G. Malpuech, Yu. Rubo, and A. Kavokin, Phys. Rev. B 75, 075323 (2007). [CrossRef]
  18. I. Shelykh, G. Pavlovic, D. D. Solnyshkov, and G. Malpuech, Phys. Rev. Lett. 102, 046407 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited