OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 7 — Apr. 1, 2011
  • pp: 1146–1148

Dissipative soliton resonance in a passively mode-locked fiber laser

Edwin Ding, Philippe Grelu, and J. Nathan Kutz  »View Author Affiliations

Optics Letters, Vol. 36, Issue 7, pp. 1146-1148 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (266 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The phenomenon of dissipative soliton resonance (DSR) predicts that an increase of pulse energy by orders of magnitude can be obtained in laser oscillators. Here, we prove that DSR is achievable in a realistic ring laser cavity using nonlinear polarization evolution as the mode-locking mechanism, whose nonlinear transmission function is adjusted through a set of waveplates and a passive polarizer. The governing model accounts explicitly for the arbitrary orientations of the waveplates and the polarizer, as well as the gain saturation in the amplifying medium. It is shown that DSR is achievable with realistic laser settings. Our findings provide an excellent design tool for optimizing the mode-locking performance and the enhancement of energy delivered per pulse by orders of magnitude.

© 2011 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 21, 2011
Manuscript Accepted: February 17, 2011
Published: March 25, 2011

Edwin Ding, Philippe Grelu, and J. Nathan Kutz, "Dissipative soliton resonance in a passively mode-locked fiber laser," Opt. Lett. 36, 1146-1148 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Haus, J. Sel. Top. Quantum Electron. 6, 1173 (2000). [CrossRef]
  2. J. N. Kutz, SIAM Rev. 48, 629 (2006). [CrossRef]
  3. A. Chong, J. Buckley, W. Renninger, and F. Wise, Opt. Express 14, 10095 (2006). [CrossRef] [PubMed]
  4. A. Chong, W. H. Renninger, and F. W. Wise, Opt. Lett. 32, 2408 (2007). [CrossRef] [PubMed]
  5. F. Li, P. K. A. Wai, and J. N. Kutz, J. Opt. Soc. Am. B 27, 2068 (2010). [CrossRef]
  6. A. Komarov, H. Leblond, and F. Sanchez, Phys. Rev. A 68, 033815 (2003). [CrossRef]
  7. J. D. Moores, Opt. Commun. 96, 65 (1993). [CrossRef]
  8. A. Komarov, H. Leblond, and F. Sanchez, Phys. Rev. E 72, 025604R (2005). [CrossRef]
  9. E. Ding and J. N. Kutz, J. Opt. Soc. Am. B 26, 2290 (2009). [CrossRef]
  10. E. Ding, E. Shlizerman, and J. N. Kutz, “A generalized master equation for high-energy passive mode-locking: the sinusoidal Ginzburg–Landau equation,” IEEE J. Quantum Electron. (to be published).
  11. Ph. Grelu, W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, J. Opt. Soc. Am. B 27, 2336 (2010). [CrossRef]
  12. N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, Phys. Lett. A 372, 3124 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited