OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 7 — Apr. 1, 2011
  • pp: 1155–1157

Performance of conformal guided mode resonance filters

Aaron T. Cannistra, Menelaos K. Poutous, Eric G. Johnson, and Thomas J. Suleski  »View Author Affiliations

Optics Letters, Vol. 36, Issue 7, pp. 1155-1157 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (453 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Guided mode resonance (GMR) filters are highly functional micro-optics capable of narrowband spectral filtering. GMR devices have previously been demonstrated on flat substrates using a wide range of materials and configurations. In this Letter, we apply a soft lithographic technique followed by the deposition of dielectric layers to generate GMR filters on a concave lens surface. Resonances of the resulting conformal GMR filters are experimentally measured and characterized, and the results are compared to the performance of similar GMR filters fabricated on flat surfaces.

© 2011 Optical Society of America

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Optical Design and Fabrication

Original Manuscript: January 14, 2011
Revised Manuscript: March 1, 2011
Manuscript Accepted: March 1, 2011
Published: March 25, 2011

Aaron T. Cannistra, Menelaos K. Poutous, Eric G. Johnson, and Thomas J. Suleski, "Performance of conformal guided mode resonance filters," Opt. Lett. 36, 1155-1157 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. T. Thurman and G. M. Morris, Appl. Opt. 42, 3225 (2003). [PubMed]
  2. D. W. Dobbs, I. Gershkovich, and B. T. Cunningham, Appl. Phys. Lett. 89, 123113 (2006).
  3. C. L. Hsu, Y. C. Liu, C. M. Wang, M. L. Wu, Y. L. Tsai, Y. H. Chou, C. C. Lee, and J. Y. Chang, J. Lightwave Technol. 24, 1922 (2006).
  4. R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, Proc. SPIE 5225, 20(2003).
  5. R. C. Rumpf and E. G. Johnson, Opt. Express 15, 3452(2007). [PubMed]
  6. W. M. Choi and O. O. Park, Nanotechnology 15, 1767(2004).
  7. Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, Science 273, 347 (1996). [PubMed]
  8. H. Sung-Hoon, H. A. N. Kang-Soo, H. Kyeong-Jae Byeon, and C. Kyung-Woo, Jpn. J. Appl. Phys. 47, 3699 (2008).
  9. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1077 (1995).
  10. T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, Langmuir 18, 5314 (2002).
  11. A. T. Cannistra and T. J. Suleski, J. Micro/Nanolithogr. MEMS MOEMS 9, 013025 (2010).
  12. G. G. Denisov, S. V. Kuzikov, and M. E. Plotkin, J. Infrared Millimeter Waves 30, 349 (2009).
  13. R. R. Boye and R. K. Kostuk, Appl. Opt. 39, 3649 (2000).
  14. K. R. Hiremath, “Coupled mode theory based modeling and analysis of circular optical microresonators,” Ph.D. dissertation (University of Twente, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited