OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 7 — Apr. 1, 2011
  • pp: 1209–1211

Circular grating coupler for creating focused azimuthally and radially polarized beams

Christopher R. Doerr and Lawrence L. Buhl  »View Author Affiliations

Optics Letters, Vol. 36, Issue 7, pp. 1209-1211 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (471 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show a planar optical circuit design that takes light from an input waveguide and creates a focused azimuthally or radially polarized beam emanating from the surface of the substrate. It is implemented in silicon-on-insulator waveguides and does not require any external components to focus the beam. The focal spot size can be subwavelength and is potentially useful for lithography, imaging, optical data storage, optical trapping, optical excitation of molecules, or coupling to optical fibers.

© 2011 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Diffraction and Gratings

Original Manuscript: January 31, 2011
Revised Manuscript: February 25, 2011
Manuscript Accepted: February 25, 2011
Published: March 28, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Christopher R. Doerr and Lawrence L. Buhl, "Circular grating coupler for creating focused azimuthally and radially polarized beams," Opt. Lett. 36, 1209-1211 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901-1 (2003). [CrossRef]
  2. D. N. Gupta, N. Kant, D. E. Kim, and H. Suk, Phys. Lett. A 368, 402 (2007). [CrossRef]
  3. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, Science 289, 415 (2000). [CrossRef] [PubMed]
  4. H. Kogelnik and T. Li, Proc. IEEE 54, 1312 (1966). [CrossRef]
  5. N. Passilly, R. de S. Denis, K. Ait-Ameur, F. Treussart, R. Hierle, and J.-F. Roch, J. Opt. Soc. Am. A 22, 984 (2005). [CrossRef]
  6. Y. Mushiake, K. Matsumura, and N. Nakajima, Proc. IEEE 60, 1107 (1972). [CrossRef]
  7. R. H. Jordan, D. G. Hall, O. King, G. Wicks, and S. Rishton, J. Opt. Soc. Am. B 14, 449 (1997). [CrossRef]
  8. E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, Nature 441, 946 (2006). [CrossRef] [PubMed]
  9. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, Science 293, 1123 (2001). [CrossRef] [PubMed]
  10. C. R. Doerr, IEEE Photonics Technol. Lett. 20, 1440 (2008). [CrossRef]
  11. C. Dragone, J. Opt. Soc. Am. A 7, 2081 (1990). [CrossRef]
  12. J. E. Curtis, B. A. Koss, and D. G. Grier, Opt. Commun. 207, 169 (2002). [CrossRef]
  13. K. Kitamura, K. Sakai, and S. Noda, Opt. Express 18, 4518 (2010). [CrossRef] [PubMed]
  14. J. R. Zurita-Sanchez and L. Novotny, J. Opt. Soc. Am. B 19, 2722 (2002). [CrossRef]
  15. R. Loudon, The Quantum Theory of Light (Oxford University, 1973), Chap. 8.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited