OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 36, Iss. 8 — Apr. 15, 2011
  • pp: 1371–1373

Wavelength-scale imaging of trapped ions using a phase Fresnel lens

A. Jechow, E. W. Streed, B. G. Norton, M. J. Petrasiunas, and D. Kielpinski  »View Author Affiliations

Optics Letters, Vol. 36, Issue 8, pp. 1371-1373 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (239 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A microfabricated phase Fresnel lens was used to image ytterbium ions trapped in a radio frequency Paul trap. The ions were laser cooled close to the Doppler limit on the 369.5 nm transition, reducing the ion motion so that each ion formed a near point source. By detecting the ion fluorescence on the same transition, near-diffraction- limited imaging with spot sizes of below 440 nm (FWHM) was achieved. To our knowledge, this is the first demonstration of wavelength-scale imaging of trapped ions and the highest imaging resolution ever achieved with atoms in free space.

© 2011 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(050.1965) Diffraction and gratings : Diffractive lenses
(270.5585) Quantum optics : Quantum information and processing
(020.3320) Atomic and molecular physics : Laser cooling

ToC Category:
Quantum Optics

Original Manuscript: January 21, 2011
Revised Manuscript: February 27, 2011
Manuscript Accepted: March 7, 2011
Published: April 8, 2011

A. Jechow, E. W. Streed, B. G. Norton, M. J. Petrasiunas, and D. Kielpinski, "Wavelength-scale imaging of trapped ions using a phase Fresnel lens," Opt. Lett. 36, 1371-1373 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Rev. Mod. Phys. 75, 281 (2003). [CrossRef]
  2. J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995). [CrossRef] [PubMed]
  3. D. Kielpinski, C. Monroe, and D. Wineland, Nature 417, 709 (2002). [CrossRef] [PubMed]
  4. J. J. García-Ripoll, P. Zoller, and J. I. Cirac, J. Phys. B 38, S567 (2005). [CrossRef]
  5. J. M. Amini, H. Uys, J. H. Wesenberg, S. Seidelin, J. Britton, J. J. Bollinger, D. Leibfried, C. Ospelkaus, A. P. VanDevender, and D. J. Wineland, New J. Phys. 12, 033031(2010). [CrossRef]
  6. D. Kielpinski, J. Opt. B 5, R121 (2003). [CrossRef]
  7. C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, Science 329, 1630 (2010). [CrossRef] [PubMed]
  8. M. J. Biercuk, H. Uys, J. W. Britton, A. P. VanDevender, and J. J. Bollinger, Nat. Nanotechnol. 5, 646 (2010). [CrossRef] [PubMed]
  9. R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt, and C. Roos, Nature 463, 68 (2010). [CrossRef] [PubMed]
  10. K. Vahala, M. Herrmann, S. Knünz, V. Batteiger, G. Saathoff, T. Hänsch, and T. Udem, Nat. Phys. 5, 682 (2009). [CrossRef]
  11. W. Neuhauser, M. Hohenstatt, P. Toschek, and H. Dehmelt, Phys. Rev. Lett. 41, 233 (1978). [CrossRef]
  12. M. Harlander, M. Brownnutt, W. Hänsel, and R. Blatt, New J. Phys. 12, 093035 (2010). [CrossRef]
  13. W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, Nature 462, 74 (2009). [CrossRef] [PubMed]
  14. R. Maiwald, D. Leibfried, J. Britton, J. C. Bergquist, G. Leuchs, and D. J. Wineland, Nat. Phys. 5, 551(2009). [CrossRef]
  15. M. Sondermann, R. Maiwald, H. Konermann, N. Lindlein, U. Peschel, and G. Leuchs, Appl. Phys. B 89, 489(2007). [CrossRef]
  16. G. Shu, N. Kurz, M. R. Dietrich, and B. B. Blinov, Phys. Rev. A 81, 042321 (2010). [CrossRef]
  17. E. W. Streed, B. G. Norton, J. J. Chapman, and D. Kielpinski, Quantum Inf. Comput. 9, 0203 (2009).
  18. J. R. Leger, M. L. Scott, and W. B. Veldkamp, Appl. Phys. Lett. 52, 1771 (1988). [CrossRef]
  19. E. W. Streed, B. G. Norton, A. Jechow, T. J. Weinhold, and D. Kielpinski, Phys. Rev. Lett. 106, 010502 (2011). [CrossRef] [PubMed]
  20. H. C. Nägerl, D. Leibfried, H. Rohde, G. Thalhammer, J. Eschner, F. Schmidt-Kaler, and R. Blatt, Phys. Rev. A 60, 145 (1999). [CrossRef]
  21. L.-M. Duan and C. Monroe, Rev. Mod. Phys. 82, 1209 (2010). [CrossRef]
  22. J. P. Hadden, J. P. Harrison, A. C. Stanley-Clarke, L. Marseglia, Y.-L. D. Ho, B. R. Patton, J. L. O’Brien, and J. G. Rarity, Appl. Phys. Lett. 97, 241901 (2010). [CrossRef]
  23. L. Deslauriers, S. Olmschenk, D. Stick, W. K. Hensinger, J. Sterk, and C. Monroe, Phys. Rev. Lett. 97, 103007 (2006). [CrossRef] [PubMed]
  24. E. W. Streed, T. J. Weinhold, and D. Kielpinski, Appl. Phys. Lett. 93, 071103 (2008). [CrossRef]
  25. D. Kielpinski, M. Cetina, J. A. Cox, and F. X. Kärtner, Opt. Lett. 31, 757 (2006). [CrossRef] [PubMed]
  26. This is in contrast to the often used approximation NA≈d/2f, which would give an NA of 0.83 in our case.
  27. J. J. Chapman, B. G. Norton, E. W. Streed, and D. Kielpinski, Rev. Sci. Instrum. 79, 095106 (2008). [CrossRef] [PubMed]
  28. D. F. V. James, Appl. Phys. B 66, 181 (1998). [CrossRef]
  29. B. G. Norton, E. W. Streed, A. Jechow, M. J. Petrasiunas, and D. Kielpinski are preparing a manuscript to be called “High-resolution spatial thermometry of trapped ions.”

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited