OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 36, Iss. 8 — Apr. 15, 2011
  • pp: 1494–1496

Modeling magnetic photonic crystals with lossy ferrites using an efficient complex envelope alternating- direction-implicit finite-difference time-domain method

Gurpreet Singh, Eng Leong Tan, and Zhi Ning Chen  »View Author Affiliations


Optics Letters, Vol. 36, Issue 8, pp. 1494-1496 (2011)
http://dx.doi.org/10.1364/OL.36.001494


View Full Text Article

Enhanced HTML    Acrobat PDF (350 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this Letter, we present an efficient complex-envelope alternating-direction-implicit finite-difference time-domain (CE-ADI-FDTD) method for the transient analysis of magnetic photonic crystals with lossy ferrites. The proposed CE-ADI-FDTD method is generally formulated for a saturated ferrite with anisotropic permittivity tensor and ferrite loss. Auxiliary differential equations for modeling saturated ferrite and Maxwell’s curl equations are first cast into a first-order differential system in a CE form. Then, by using an efficient ADI splitting formulas, the proposed CE-ADI-FDTD method is attained in a very concise form with few and simple right-hand side terms. The performance of the proposed method is validated and compared with the explicit FDTD method.

© 2011 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(230.3810) Optical devices : Magneto-optic systems

ToC Category:
Optical Devices

History
Original Manuscript: March 1, 2011
Manuscript Accepted: March 11, 2011
Published: April 15, 2011

Citation
Gurpreet Singh, Eng Leong Tan, and Zhi Ning Chen, "Modeling magnetic photonic crystals with lossy ferrites using an efficient complex envelope alternating-direction-implicit finite-difference time-domain method," Opt. Lett. 36, 1494-1496 (2011)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-8-1494


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Figotin and I. Vitebskiy, Phys. Rev. B 67, 165210 (2003). [CrossRef]
  2. A. Figotin and I. Vitebskiy, Phys. Rev. A 76, 053839 (2007). [CrossRef]
  3. K.-Y. Jung and F. L. Teixeira, Phys. Rev. A 78, 043826(2008). [CrossRef]
  4. E. L. Tan, IEEE Antennas Propag Mag. 56, 170 (2008). [CrossRef]
  5. H. Rao, R. Scarmozzino, and R. M. Osgood, Jr., IEEE Photon. Technol. Lett. 14, 477 (2002). [CrossRef]
  6. S. Chen, W. Zang, A. Schulzgen, J. Liu, L. Han, Y. Zeng, J. Tian, F. Song, J. V. Moloney, and N. Peyghambarian, Opt. Lett. 33, 2755 (2008). [CrossRef] [PubMed]
  7. R. Zhu, S. Fu, and H. Peng, J. Magn. Magn. Mater. 323, 145 (2011).
  8. A. B. Khanikaev and M. J. Steel, Opt. Express 17, 5265(2009). [CrossRef] [PubMed]
  9. K. Zhang and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 2007).
  10. K.-Y. Jung, B. Donderici, and F. L. Teixeira, Phys. Rev. B 74, 165207 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited