OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 36, Iss. 8 — Apr. 15, 2011
  • pp: 1497–1499

Ensemble method to measure the potential energy of nanoparticles in an optical trap

Joseph Junio, Jack Ng, Joel A. Cohen, Zhifang Lin, and H. Daniel Ou-Yang  »View Author Affiliations


Optics Letters, Vol. 36, Issue 8, pp. 1497-1499 (2011)
http://dx.doi.org/10.1364/OL.36.001497


View Full Text Article

Enhanced HTML    Acrobat PDF (306 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method is described for measuring the potential energy of nanoparticles in an optical trap by trapping an ensemble of particles with a focused laser beam. The force balance between repulsive osmotic and confining gradient-force pressures determines the single-particle trapping potential independent of interactions between the particles. The ensemble nature of the measurement permits evaluation of single-particle trapping energies much smaller than k B T . Energies obtained by this method are compared to those of single-particle methods as well as to theoretical calculations based on classical electromagnetic optics.

© 2011 Optical Society of America

OCIS Codes
(350.4990) Other areas of optics : Particles
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Tweezers or Optical Manipulation

History
Original Manuscript: November 9, 2010
Revised Manuscript: March 4, 2011
Manuscript Accepted: March 5, 2011
Published: April 15, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Joseph Junio, Jack Ng, Joel A. Cohen, Zhifang Lin, and H. Daniel Ou-Yang, "Ensemble method to measure the potential energy of nanoparticles in an optical trap," Opt. Lett. 36, 1497-1499 (2011)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-8-1497


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986). [CrossRef] [PubMed]
  2. H. D. Ou-Yang and M.-T. Wei, Annu. Rev. Phys. Chem. 61, 421 (2010). [CrossRef] [PubMed]
  3. J. C. Crocker and D. G. Grier, Phys. Rev. Lett. 73, 352(1994). [CrossRef] [PubMed]
  4. L. Hough and H. Ou-Yang, J. Nanopart. Res. 1, 495 (1999). [CrossRef]
  5. M. E. Arsenault, Y. Sun, H. Bau, and Y. Goldman, Phys. Chem. Chem. Phys. 11, 4834 (2009). [CrossRef] [PubMed]
  6. C.-H. Lien, M.-T. Wei, T.-Y. Tseng, C.-D. Lee, C. Wang, T.-F. Wang, H. D. Ou-Yang, and A. Chiou, Opt. Express 17, 20376 (2009). [CrossRef] [PubMed]
  7. M. Lang, P. Fordyce, and S. Block, J. Biol. 2, 6 (2003). [CrossRef] [PubMed]
  8. R. Simmons, J. Finer, S. Chu, and J. Spudich, Biophys. J. 70, 1813 (1996). [CrossRef] [PubMed]
  9. K. Berg-Sørensen and H. Flyvbjerg, Rev. Sci. Instrum. 75, 594 (2004). [CrossRef]
  10. J. Junio, S. Park, M.-W. Kim, and H. D. Ou-Yang, Solid State Commun. 150, 1003 (2010). [CrossRef]
  11. Y. Harada and T. Asakura, Opt. Commun. 124, 529 (1996). [CrossRef]
  12. M. Born and E. Wolf, Principles of Optics, 7th ed.(Cambridge University, 2005).
  13. The confining pressure exerted on a system of noninteracting particles in an isotropic Gaussian potential U(r)=U0exp⁡(−r2/R2) is found by integrating the product of the force per particle F(r)=−dU/dr and the particle number density N(r)=N∞exp⁡(−U(r)/kBT). ΔP≈∫0RF(r)N(r)dr≈0.7N∞U0≈0.65NU0 for U0/kBT in the range 0.1–0.2, where R is the estimated radius of our detection volume and N is the average particle number density in the detection volume. Because of experimental uncertainties , we approximate the prefactor as ≈1/2.
  14. C. Hosokawa, H. Yoshikawa, and H. Masuhara, Phys. Rev. E 70, 061410 (2004). [CrossRef]
  15. A. Rohrbach, Phys. Rev. Lett. 95, 168102 (2005). [CrossRef] [PubMed]
  16. J. Ng, Z. Lin, and C. T. Chan, Phys. Rev. Lett. 104, 103601(2010). [CrossRef] [PubMed]
  17. A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, Proc. R. Soc. A 459, 3021 (2003). [CrossRef]
  18. N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, Phys. Rev. E 75, 021914(2007). [CrossRef]
  19. K. C. Vermeulen, G. J. L. Wuite, G. J. M. Stienen, and C. F. Schmidt, Appl. Opt. 45, 1812 (2006). [CrossRef] [PubMed]
  20. Y. Hu and H. D. Ou-Yang, “Dynamics of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy,” presented at American Physical Society March Meeting 2010 (March 15–19, 2010).
  21. T. Rodgers, S. Shoji, Z. Sekkat, and S. Kawata, Phys. Rev. Lett. 101, 127402 (2008). [CrossRef] [PubMed]
  22. M. Murata, Y. Okamoto, Y.-S. Park, N. Kaji, M. Tokeshi, and Y. Baba, Anal. Bioanal. Chem. 394, 277 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited