OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 1 — Jan. 1, 2012
  • pp: 112–114

Effective optical response of silicon to sunlight in the finite-difference time-domain method

Alexei Deinega and Sajeev John  »View Author Affiliations

Optics Letters, Vol. 37, Issue 1, pp. 112-114 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (186 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The frequency dependent dielectric permittivity of dispersive materials is commonly modeled as a rational polynomial based on multiple Debye, Drude, or Lorentz terms in the finite-difference time-domain (FDTD) method. We identify a simple effective model in which dielectric polarization depends both on the electric field and its first time derivative. This enables nearly exact FDTD simulation of light propagation and absorption in silicon in the spectral range of 300–1000 nm. Numerical precision of our model is demonstrated for Mie scattering from a silicon sphere and solar absorption in a silicon nanowire photonic crystal.

© 2012 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(350.6050) Other areas of optics : Solar energy

ToC Category:
Numerical Methods

Original Manuscript: September 2, 2011
Revised Manuscript: November 3, 2011
Manuscript Accepted: November 4, 2011
Published: December 26, 2011

Alexei Deinega and Sajeev John, "Effective optical response of silicon to sunlight in the finite-difference time-domain method," Opt. Lett. 37, 112-114 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Taflove and S. H. Hagness, Computational Electrodynamics: The Finite Difference Time-Domain Method(Artech House, 2005).
  2. I. Valuev, A. Deinega, and S. Belousov, Opt. Lett. 33, 1491 (2008). [CrossRef]
  3. Y. Hao and R. Mittra, FDTD Modeling of Metamaterials: Theory and Applications (Artech House, 2009).
  4. A. Deinega, S. Belousov, and I. Valuev, Opt. Lett. 34, 860 (2009). [CrossRef]
  5. J. Leng, J. Opsal, H. Chu, M. Senko, and D. E. Aspnes, Thin Solid Films 313–314, 132 (1998). [CrossRef]
  6. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, J. Chem. Phys. 125, 164705 (2006). [CrossRef]
  7. A. Vial, T. Laroche, M. Dridi, and L. Le Cunff, Appl. Phys. A 103, 849 (2011). [CrossRef]
  8. J. Lu and Y. Chang, Superlattices Microstruct. 47, 60 (2010). [CrossRef]
  9. A. Vial, J. Opt. A 9, 745 (2007). [CrossRef]
  10. M. A. Green and M. Keevers, Progr. Photovol. 3, 189 (1995). [CrossRef]
  11. A. Deinega, I. Valuev, B. Potapkin, and Yu. Lozovik, J. Opt. Soc. Am. A 28, 770 (2011). [CrossRef]
  12. J. A. Pereda, A. Vegas, and A. Prieto, IEEE Trans. Microwave Theory Tech. 50, 1689 (2002). [CrossRef]
  13. S. Liu, N. Yuan, and J. Mo, IEEE Microw. Wireless Compon. Lett. 13, 187 (2003). [CrossRef]
  14. T. O. Korner and W. Fichtner, Opt. Lett. 22, 1586 (1997). [CrossRef]
  15. L. J. Prokopeva, J. D. Borneman, and A. V. Kildishev, IEEE Trans. Magn. 47, 1150 (2011). [CrossRef]
  16. Electromagnetic Template Library, http://kintechlab.com .
  17. A. Deinega and I. Valuev, Comput. Phys. Commun. 182, 149 (2011). [CrossRef]
  18. A. Deinega and I. Valuev, Opt. Lett. 32, 3429 (2007). [CrossRef]
  19. L. Hu and G. Chen, Nano Lett. 7, 3249 (2007). [CrossRef]
  20. G. Demesy, F. Zolla, A. Nicolet, and M. Commandre, J. Opt. Soc. Am. A 27, 878 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited