OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 10 — May. 15, 2012
  • pp: 1643–1645

Leveraging bimodal kinetics to improve detection specificity

C. Shi, S. Mehrabani, and A. M. Armani  »View Author Affiliations

Optics Letters, Vol. 37, Issue 10, pp. 1643-1645 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (319 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical microcavities are high sensitivity transducers able to detect single nanoparticles and molecules. However, the specificity of detection is dependent on the availability of an appropriate targeting moiety with minimal cross-reactivity. In the present work, an alternative approach is shown. Namely, using biotin-functionalized toroidal microcavities, the dissociation constant of biotin to two different streptavidin complexes (free and polystyrene bead) is determined. Based on the difference in affinity and in mass transport, the two complexes are identified from a mixture. By leveraging information in the binding site, improved specificity can be achieved.

© 2012 Optical Society of America

OCIS Codes
(000.1430) General : Biology and medicine
(130.6010) Integrated optics : Sensors
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Integrated Optics

Original Manuscript: January 17, 2012
Revised Manuscript: March 5, 2012
Manuscript Accepted: March 12, 2012
Published: May 9, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

C. Shi, S. Mehrabani, and A. M. Armani, "Leveraging bimodal kinetics to improve detection specificity," Opt. Lett. 37, 1643-1645 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. L. Washburn and R. C. Bailey, Analyst 136, 227 (2010). [CrossRef]
  2. H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010). [CrossRef]
  3. D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, Microfluid Nanofluid 4, 33 (2008). [CrossRef]
  4. M. S. Luchansky, A. L. Washburn, M. S. McClellan, and R. C. Bailey, Lab on a Chip 11, 2042 (2011). [CrossRef]
  5. C. Soteropulos, H. Hunt, and A. M. Armani, Appl. Phys. Lett. 99, 103703 (2011). [CrossRef]
  6. A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron. 12, 3 (2006). [CrossRef]
  7. W. E. Paul, Fundamental Immunology5th ed. (Lippincott, Williams & Wilkins, Philadelphia, 2003), p. 1700.
  8. D. G. Myszka, Curr. Opin. Biotech 8, 50 (1997). [CrossRef]
  9. S. Zhao and W. M. Reichert, Langmuir 8, 2785 (1992). [CrossRef]
  10. D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, Nature 421, 925 (2003). [CrossRef]
  11. H. K. Hunt, C. Soteropulos, and A. M. Armani, Sensors 10, 9317 (2010). [CrossRef]
  12. X. Zhang, H. S. Choi, and A. M. Armani, Appl. Phys. Lett. 96, 153304 (2010). [CrossRef]
  13. A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, Appl. Phys. Lett. 87, 151118 (2005). [CrossRef]
  14. N. M. Green, Methods 184, 51 (1990). [CrossRef]
  15. V. H. Perez-Luna, M. J. O’Brien, K. A. Opperman, P. D. Hampton, G. P. Lopez, L. A. Klumb, and P. S. Stayton, J. Am. Chem. Soc. 121, 6469 (1999). [CrossRef]
  16. P. Schuck and A. P. Minton, Anal. Biochem. 240, 262 (1996). [CrossRef]
  17. J. M. Gamba and R. C. Flagan, Appl. Phys. Lett. 99, 253705 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited