OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 37, Iss. 10 — May. 15, 2012
  • pp: 1646–1648

Reduction of pulse-to-pulse fluctuation in laser pulse energy using the optical Kerr effect

Shigeki Matsuo, Lihe Yan, Jinhai Si, Takuro Tomita, and Shuichi Hashimoto  »View Author Affiliations


Optics Letters, Vol. 37, Issue 10, pp. 1646-1648 (2012)
http://dx.doi.org/10.1364/OL.37.001646


View Full Text Article

Enhanced HTML    Acrobat PDF (192 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An all-optical stabilization method of laser pulse energy is proposed using the optical Kerr effect (OKE). The method uses the OKE induced by a portion of the laser pulse as a power controller. The decrease (increase) in the throughput of the optical setup for OKE compensates for the increase (decrease) in pulse energy, thereby stabilizing the pulse-to-pulse fluctuation in pulse energy. The validity of this principle was proven by experiments with a femtosecond laser.

© 2012 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(320.7090) Ultrafast optics : Ultrafast lasers
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 6, 2011
Revised Manuscript: March 9, 2012
Manuscript Accepted: March 9, 2012
Published: May 9, 2012

Citation
Shigeki Matsuo, Lihe Yan, Jinhai Si, Takuro Tomita, and Shuichi Hashimoto, "Reduction of pulse-to-pulse fluctuation in laser pulse energy using the optical Kerr effect," Opt. Lett. 37, 1646-1648 (2012)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-37-10-1646


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Shen, The Principles of Nonlinear Optics (Wiley, 2003).
  2. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University, 1995).
  3. K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, Nature 440, 935 (2006). [CrossRef]
  4. C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenney-Wallace, J. Phys. Chem. 91, 2028 (1987). [CrossRef]
  5. Y. J. Chang, P. Cong, and J. D. Simon, J. Phys. Chem. 99, 7857 (1995). [CrossRef]
  6. R. Nakamura and Y. Kanematsu, Rev. Sci. Instrum. 75, 636 (2004). [CrossRef]
  7. J. Herrmann, J. Opt. Soc. Am. B 11, 498 (1994). [CrossRef]
  8. M. Yanik, S. Fan, and M. Soljačić, Appl. Phys. Lett. 83, 2739 (2003). [CrossRef]
  9. T. Oksenhendler, F. Legrand, M. Perdrix, O. Gobert, and D. Kaplan, Appl. Phys. B 79, 933 (2004). [CrossRef]
  10. S. Tokita, M. Hashida, S. Masuno, S. Namba, and S. Sakabe, Opt. Express 16, 14875 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited