OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 10 — May. 15, 2012
  • pp: 1721–1723

Silicon slow-light-based photonic mixer for microwave-frequency conversion applications

A. M. Gutiérrez, A. Brimont, J. Herrera, M. Aamer, J. Martí, D. J. Thomson, F. Y. Gardes, G. T. Reed, J. M. Fedeli, and P. Sanchis  »View Author Affiliations

Optics Letters, Vol. 37, Issue 10, pp. 1721-1723 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (353 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe and demonstrate experimentally a method for photonic mixing of microwave signals by using a silicon electro-optical Mach–Zehnder modulator enhanced via slow-light propagation. Slow light with a group index of 11, achieved in a one-dimensional periodic structure, is exploited to improve the upconversion performance of an input frequency signal from 1 to 10.25 GHz. A minimum transmission point is used to successfully demonstrate the upconversion with very low conversion losses of 7dB and excellent quality of the received I/Q modulated QPSK signal with an optimum EVM of 8%.

© 2012 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.7220) Nonlinear optics : Upconversion
(250.4110) Optoelectronics : Modulators

ToC Category:
Nonlinear Optics

Original Manuscript: February 9, 2012
Revised Manuscript: March 21, 2012
Manuscript Accepted: March 23, 2012
Published: May 14, 2012

A. M. Gutiérrez, A. Brimont, J. Herrera, M. Aamer, J. Martí, D. J. Thomson, F. Y. Gardes, G. T. Reed, J. M. Fedeli, and P. Sanchis, "Silicon slow-light-based photonic mixer for microwave-frequency conversion applications," Opt. Lett. 37, 1721-1723 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Capmany and D. Novak, Nat. Photon. 1, 319 (2007). [CrossRef]
  2. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, Nat. Photon. 4, 660 (2010). [CrossRef]
  3. A. Khilo, C. Sorace, and F. Kärtner, Opt. Express 19, 4485 (2011). [CrossRef]
  4. S. Muping, Z. Lin, R. G. Beausoleil, and A. E. Willner, IEEE J. Sel. Top. Quantum Electron. 16, 185 (2010). [CrossRef]
  5. F. Vacondio, M. Mirshafiei, J. Basak, L. Ansheng, L. Ling, M. Paniccia, and L. A. Rusch, IEEE J. Sel. Top. Quantum Electron. 16, 141 (2010). [CrossRef]
  6. J. Marti, V. Polo, F. Ramos, and J. M. Fuster, Wireless Pers. Commun.15, 31 (2000). [CrossRef]
  7. B. Cabon, Sci. Iran. Trans. D 17, 149 (2010).
  8. H. F. Taylor, J. Lightwave Technol. 17, 1875 (1999). [CrossRef]
  9. A. Brimont, D. J. Thomson, P. Sanchis, J. Herrera, F. Y. Gardes, J. M. Fedeli, G. T. Reed, and J. Martí, Opt. Express 19, 20876 (2011). [CrossRef]
  10. D. Marpaung, “High dynamic range analog photonic links design and implementation,” thesis (University of Twente, Netherlands, 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited