OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 10 — May. 15, 2012
  • pp: 1730–1732

Wavelength dependence of focusing properties of two-dimensional photonic quasicrystal flat lens

Jianjun Liu, Zhigang Fan, Haili Hu, Maohua Yang, Chunying Guan, Libo Yuan, Hao Guo, and Xiong Zhang  »View Author Affiliations

Optics Letters, Vol. 37, Issue 10, pp. 1730-1732 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (507 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigated the wavelength dependence of the focusing properties of a germanium-cylinder-based two-dimensional (2D) decagonal Penrose-type photonic quasicrystal (PQC) flat lens for the first time, to the best of our knowledge. We found that near the second bandgap and in the high-frequency side (between the bandgap boundary and the first light intensity peak) of the pass band, the flat lens can exhibit a focusing effect for a point light source and that the focusing wavelengths can directly be drawn from the photonic band structure. For all the focusing wavelengths, the summation of the object distance and the image distance is less than the thickness of the flat lens when the object distance is half the thickness of the flat lens. As the wavelength increases, the image distance, the image quality, and the effective refractive index of the flat lens increase, whereas the image power of the point light source decreases. The effective refractive index of the flat lens is less than 1.

© 2012 Optical Society of America

OCIS Codes
(120.5710) Instrumentation, measurement, and metrology : Refraction
(220.3630) Optical design and fabrication : Lenses
(260.2110) Physical optics : Electromagnetic optics
(160.5298) Materials : Photonic crystals

ToC Category:

Original Manuscript: November 24, 2011
Revised Manuscript: February 9, 2012
Manuscript Accepted: February 21, 2012
Published: May 14, 2012

Jianjun Liu, Zhigang Fan, Haili Hu, Maohua Yang, Chunying Guan, Libo Yuan, Hao Guo, and Xiong Zhang, "Wavelength dependence of focusing properties of two-dimensional photonic quasicrystal flat lens," Opt. Lett. 37, 1730-1732 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Shechtman, I. Blech, D. Cratias, and J. W. Cahn, Phys. Rev. Lett. 53, 1951 (1984). [CrossRef]
  2. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd. ed. (Academic, 2008).
  3. Y. S. Chan, C. T. Chan, and Z. Y. Liu, Phys. Rev. Lett. 80, 956 (1998). [CrossRef]
  4. C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, and D. Z. Zhang, Appl. Phys. Lett. 75, 1848 (1999). [CrossRef]
  5. M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, Nature 404, 740 (2000). [CrossRef]
  6. Y. Q. Wang, X. Y. Hu, X. S. Xu, B. Y. Cheng, and D. Z. Zhang, Phys. Rev. B 68, 165106 (2003). [CrossRef]
  7. Z. F. Feng, X. D. Zhang, Y. Q. Wang, Z. Y. Li, B. Y. Cheng, and D. Z. Zhang, Phys. Rev. Lett. 94, 247402 (2005). [CrossRef]
  8. X. D. Zhang, Z. Y. Li, B. Y. Cheng, and D. Z. Zhang, Opt. Express 15, 1292 (2007). [CrossRef]
  9. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Micro. Theory Tech. 47, 2075 (1999). [CrossRef]
  10. P. C. Ingrey, K. I. Hopcraft, O. French, and E. Jakeman, Opt. Lett. 34, 1015 (2009). [CrossRef]
  11. X. D. Zhang, Phys. Rev. B 71, 235103 (2005). [CrossRef]
  12. E. Di Gennaro, D. Morello, C. Miletto, S. Savo, A. Andreone, G. Castaldi, V. Galdi, and V. Pierro, Photon. Nanostruct. Fundam. Appl. 6, 60 (2008). [CrossRef]
  13. K. Ren, X. B. Ren, Z. Y. Li, and D. Z. Zhang, Eur. Phys. J. Appl. Phys. 42, 281 (2008). [CrossRef]
  14. E. Di Gennaro, C. Miletto, S. Savo, A. Andreone, D. Morello, V. Galdi, G. Castaldi, and V. Pierro, Phys. Rev. B 77, 193104 (2008). [CrossRef]
  15. Y. Neve-Oz, T. Pollok, S. Burger, M. Golosovsky, and D. Davidov, J. Appl. Phys. 107, 063105 (2010). [CrossRef]
  16. X. B. Ren and K. Ren, Solid State Commun. 151, 42 (2011). [CrossRef]
  17. T. G. Shen, W. J. Meng, J. Sun, Z. H. Li, B. G. Yuan, G. Wang, and M. Huang, Appl. Phys. B 100, 841 (2010). [CrossRef]
  18. A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylén, A. Talneau, and S. Anandl, Phys. Rev. Lett. 93, 073902 (2004). [CrossRef]
  19. J. J. Liu, Z. G. Fan, H. S. Xiao, W. Zhang, C. Y. Guan, and L. B. Yuan, J. Infrared Millim. Waves 31, 35 (2012). [CrossRef]
  20. W. Śmigaj, B. Gralak, R. Pierre, and G. Tayeb, Opt. Lett. 34, 3532 (2009). [CrossRef]
  21. L. Chen, S. L. He, and L. F. Shen, Phys. Rev. Lett. 92, 107404 (2004). [CrossRef]
  22. M. Notomi, Phys. Rev. B 62, 10696 (2000). [CrossRef]
  23. V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968). [CrossRef]
  24. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000). [CrossRef]
  25. X. Wang, Z. F. Ren, and K. Kempa, Opt. Express 12, 2919 (2004). [CrossRef]
  26. H. B. Chen, X. S. Chen, R. L. Zhou, and W. Lu, Solid State Commun. 146, 192 (2008). [CrossRef]
  27. M. Born and E. Wolf, Principles of Optics, 7th ed.(Academic, 1999), p. 462.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited