OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 37, Iss. 10 — May. 15, 2012
  • pp: 1733–1735

Entanglement of two spatially separated qubits via correlated photons

Eyob A. Sete and Sumanta Das  »View Author Affiliations


Optics Letters, Vol. 37, Issue 10, pp. 1733-1735 (2012)
http://dx.doi.org/10.1364/OL.37.001733


View Full Text Article

Enhanced HTML    Acrobat PDF (239 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that a high degree of steady-state entanglement between two spatially separated and initially uncoupled qubits can be achieved via interaction with a quantized squeezed field in a cavity. The cavity field induces two-photon coherence, which is crucial in creating entanglement between the qubits. Optimum entanglement is obtained when the less dissipative qubit is incoherently pumped while the other dissipates the excitation. Given the current state-of-the-art in cavity quantum electrodynamics and squeezed light sources, our scheme presents an effective way for light-to-matter entanglement transfer.

© 2012 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.6570) Quantum optics : Squeezed states
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: November 29, 2011
Revised Manuscript: March 19, 2012
Manuscript Accepted: March 30, 2012
Published: May 14, 2012

Citation
Eyob A. Sete and Sumanta Das, "Entanglement of two spatially separated qubits via correlated photons," Opt. Lett. 37, 1733-1735 (2012)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-37-10-1733


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Nielsen and I. L. Chuang, Quantum Computing and Quantum Information (Cambridge University, 2000).
  2. J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73, 565 (2001). [CrossRef]
  3. E. A. Sete and S. Das, Phys. Rev. A 83, 042301 (2011). [CrossRef]
  4. D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998). [CrossRef]
  5. J. Clarke and F. K. Wilhelm, Nature 453, 1031 (2008). [CrossRef]
  6. A. Rai, S. Das, and G. Agarwal, Opt. Express 18, 6241 (2010). [CrossRef]
  7. B. Kraus and J. I. Cirac, Phys. Rev. Lett. 92, 013602 (2004). [CrossRef]
  8. C. Cabrillo, J. I. Cirac, P. Garca-Fernández, and P. Zoller, Phys. Rev. A 59, 1025 (1999). [CrossRef]
  9. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, Phys. Rev. Lett. 83, 4204 (1999). [CrossRef]
  10. A. Serafini, M. Paternostro, M. S. Kim, and S. Bose, Phys. Rev. A 73, 022312 (2006). [CrossRef]
  11. E. del Valle, J. Opt. Soc. Am. B 28, 228 (2011). [CrossRef]
  12. J.-B. Xu and S.-B. Li, New J. Phys. 7, 72 (2005). [CrossRef]
  13. W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998). [CrossRef]
  14. J. I. Cirac, Phys. Rev. A 46, 4354 (1992). [CrossRef]
  15. J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H.-C. Ngerl, D. M. Stamper-Kurn, and H. J. Kimble, Phys. Rev. Lett. 90, 133602 (2003). [CrossRef]
  16. N. Ph. Georgiades, E. S. Polzik, K. Edamatsu, and H. J. Kimble, Phys. Rev. Lett. 75, 3426 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited