OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 10 — May. 15, 2012
  • pp: 1751–1753

Analysis of an ultra-compact wavelength filter based on hybrid plasmonic waveguide structure

N. Zhu and T. Mei  »View Author Affiliations

Optics Letters, Vol. 37, Issue 10, pp. 1751-1753 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (400 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this letter, we propose and analyze an ultra-compact wavelength filter on silicon-based hybrid plasmonic waveguides, which confines light in a nanometeric silica dioxide layer between the silicon substrate and metal cap. The filter consists of a stub structure coupled to a straight waveguide. The three-dimensional finite-difference time-domain (FDTD) method is applied to calculate the spectral responses of such devices. Similar resonant behaviors are obtained since those devices are based on two-dimensional Metal-Insulator-Metal waveguide structure. Results also show that by adding stubs and tuning the distance between stubs can further improve the device’s performance and shape the spectral response to some extent.

© 2012 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

Original Manuscript: January 17, 2012
Revised Manuscript: March 13, 2012
Manuscript Accepted: March 27, 2012
Published: May 15, 2012

N. Zhu and T. Mei, "Analysis of an ultra-compact wavelength filter based on hybrid plasmonic waveguide structure," Opt. Lett. 37, 1751-1753 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, Opt. Express 13, 977 (2005). [CrossRef]
  3. G. Veronis and S. Fan, Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  4. L. Chen, J. Shakya, and M. Lipson, Opt. Lett. 31, 2133 (2006). [CrossRef]
  5. L. Liu, Z. Han, and S. He, Opt. Express 13, 6645 (2005). [CrossRef]
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006). [CrossRef]
  7. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, Opt. Express 14, 4494 (2006). [CrossRef]
  8. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photon. 2, 496 (2008). [CrossRef]
  9. D. Dai and S. He, Opt. Express 17, 16646 (2009). [CrossRef]
  10. M. Fujii, J. Leuthold, and W. Freude, IEEE Photon. Technol. Lett. 21, 362 (2009). [CrossRef]
  11. M. Wu, Z. Han, and V. Van, Opt. Express 18, 11728 (2010). [CrossRef]
  12. Z. Han and S. He, Opt. Commun. 278, 199 (2007). [CrossRef]
  13. Z. Han, L. Liu, and E. Forsberg, Opt. Commun. 259, 690 (2006). [CrossRef]
  14. A. Hosseini and Y. Massoud, Opt. Express 14, 11318 (2006). [CrossRef]
  15. X. Lin and X. Huang, Opt. Lett. 33, 2875 (2008).
  16. A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, Opt. Express 18, 6191 (2010). [CrossRef]
  17. G. Zou, Y. Xiao, Z. Han, C. Dong, X. Chen, J. Cui, G. Guo, and F. Sun, J. Opt. Soc. Am. B 27, 2495 (2010). [CrossRef]
  18. M. A. Ordal, L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. Alexander, and C. A. Ward, Appl. Opt. 22, 1099 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited