OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 11 — Jun. 1, 2012
  • pp: 1904–1906

Multivariate empirical mode decomposition approach for adaptive denoising of fringe patterns

Xiang Zhou, Tao Yang, Haihua Zou, and Hong Zhao  »View Author Affiliations

Optics Letters, Vol. 37, Issue 11, pp. 1904-1906 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (616 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An adaptive approach is presented for noise reduction of optical fringe patterns using multivariate empirical mode decomposition. Adjacent rows and columns of patterns are treated as multichannel signals and are decomposed into multiscale components. Fringe patterns are reconstructed with less noise by simply thresholding coefficients in different scales. The proposed approach can better concentrate local main components of fringe signals into single scale, compared with the conventional multiscale denoising method. A simulated pattern and an actual example are examined. Signal-to-noise ratio (SNR) of the simulated pattern is more than doubled.

© 2012 Optical Society of America

OCIS Codes
(100.2650) Image processing : Fringe analysis
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis

ToC Category:
Image Processing

Original Manuscript: February 14, 2012
Revised Manuscript: March 27, 2012
Manuscript Accepted: April 10, 2012
Published: May 23, 2012

Xiang Zhou, Tao Yang, Haihua Zou, and Hong Zhao, "Multivariate empirical mode decomposition approach for adaptive denoising of fringe patterns," Opt. Lett. 37, 1904-1906 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. E. Huang, Z. Shen, S. R. Long, M. L. C. Wu, H. H. Shih, Q. N. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, P. Roy. Soc. Lond. A Mat. 454, 903 (1998). [CrossRef]
  2. M. B. Bernini, G. E. Galizzi, A. Federico, and G. H. Kaufmann, Opt. Laser. Eng. 45, 723 (2007). [CrossRef]
  3. S. Li, X. Su, W. Chen, and L. Xiang, J. Opt. Soc. Am. A 26, 1195 (2009). [CrossRef]
  4. M. B. Bernini, A. Federico, and G. H. Kaufmann, Appl. Opt. 47, 2592 (2008). [CrossRef]
  5. M. Wielgus and K. Patorski, Appl. Opt. 50, 5513 (2011). [CrossRef]
  6. X. Zhou, H. Zhao, and T. Jiang, Opt. Lett. 34, 2033 (2009). [CrossRef]
  7. M. B. Bernini, A. Federico, and G. H. Kaufmann, Appl. Opt. 50, 641 (2011). [CrossRef]
  8. Y. Zhou and H. G. Li, Opt. Express 19, 18207 (2011). [CrossRef]
  9. N. Rehman and D. P. Mandic, Soc. Lond. A Mat. 466, 1291 (2010). [CrossRef]
  10. Z. Wu and N. E. Huang, Adv. Adapt. Data Anal. 1, 1 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited