OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 37, Iss. 11 — Jun. 1, 2012
  • pp: 1971–1973

Dynamic control of the operation regimes of a mode-locked fiber laser based on intracavity polarizing fibers: experimental and theoretical validation

Guillermo E. Villanueva and Pere Pérez-Millán  »View Author Affiliations


Optics Letters, Vol. 37, Issue 11, pp. 1971-1973 (2012)
http://dx.doi.org/10.1364/OL.37.001971


View Full Text Article

Enhanced HTML    Acrobat PDF (395 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An intracavity polarizing fiber is proposed to control the emission regime of a passively mode-locked fiber laser. Stable operation in self-starting high and low dispersion soliton mode-locking and 100 GHz multiwavelength regimes is demonstrated through numerical simulations and experimental validation. Mode-locking stability is ensured by a saturable absorber in the ring cavity. The effective selection of operation regime is dynamically carried out by controlling the intracavity polarization state.

© 2012 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(140.4050) Lasers and laser optics : Mode-locked lasers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 8, 2012
Revised Manuscript: March 28, 2012
Manuscript Accepted: April 16, 2012
Published: May 29, 2012

Citation
Guillermo E. Villanueva and Pere Pérez-Millán, "Dynamic control of the operation regimes of a mode-locked fiber laser based on intracavity polarizing fibers: experimental and theoretical validation," Opt. Lett. 37, 1971-1973 (2012)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-37-11-1971


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. E. Fermann and I. Hartl, IEEE J. Sel. Top. Quantum Electron. 15, 191 (2009). [CrossRef]
  2. E. P. Ippen, Appl. Phys. B 58, 159 (1994). [CrossRef]
  3. H. Haus, IEEE J. Quantum Electron. 11, 736 (1975). [CrossRef]
  4. F. X. Kärtner, J. Aus der Au, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 4, 159 (1998). [CrossRef]
  5. Z. Zhang, L. Zhan, K. Xu, J. Wu, Y. Xia, and J. Lin, Opt. Lett. 33, 324 (2008). [CrossRef]
  6. S. Li, X. Chen, D. Kuksenkov, J. Koh, M. Li, L. Zenteno, and D. Nolan, Opt. Express 14, 6098 (2006). [CrossRef]
  7. P. S. Liang, Z. X. Zhang, Q. Q. Kuang, and M. H. Sang, Laser Phys. 19, 2124 (2009). [CrossRef]
  8. D. Marcuse, IEEE J. Quantum Electron. 26, 550 (1990). [CrossRef]
  9. C. R. Menyuk, IEEE J. Quantum Electron. 25, 2674 (1989). [CrossRef]
  10. N. J. Smith, K. J. Blow, and I. Andonovic, J. Lightwave Technol. 10, 1329 (1992). [CrossRef]
  11. A. Ruehl, D. Wandt, U. Morgner, and D. Kracht, Opt. Express 16, 8181 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited