OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 11 — Jun. 1, 2012
  • pp: 2022–2024

Frequency-modulated continuous-wave lidar using I/Q modulator for simplified heterodyne detection

S. Gao and R. Hui  »View Author Affiliations

Optics Letters, Vol. 37, Issue 11, pp. 2022-2024 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (349 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A frequency-modulated continuous-wave (FMCW) lidar is demonstrated with heterodyne detection. The lidar transmitter utilizes an electro-optic I/Q modulator for the first time to generate carrier-suppressed and frequency-shifted FM modulation. This eliminates the need for an acousto-optic frequency shifter commonly used in heterodyne lidar transmitters. It also allows the use of a much wider modulation bandwidth to improve the range resolution. The capability of complex optical field modulation of the I/Q modulator provides an additional degree of freedom compared with an intensity modulator, which will benefit future lidar applications.

© 2012 Optical Society of America

OCIS Codes
(060.2300) Fiber optics and optical communications : Fiber measurements
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 22, 2012
Manuscript Accepted: April 4, 2012
Published: May 30, 2012

S. Gao and R. Hui, "Frequency-modulated continuous-wave lidar using I/Q modulator for simplified heterodyne detection," Opt. Lett. 37, 2022-2024 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Vaughan, Physica Scripta T78, 73 (1998). [CrossRef]
  2. C. J. Karlsson, F. A. A. Olsson, D. Letalick, and M. Harris, Appl. Opt. 39, 3716 (2000). [CrossRef]
  3. M. Harris, R. I. Young, F. Kopp, A. Dolfi, and J.-P. Cariou, Aerosp. Sci. Technol. 6, 325 (2002). [CrossRef]
  4. A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, IEEE J Sel. Top. Quant. 15, 441 (2009). [CrossRef]
  5. M. Harris, R. I. Young, F. Köpp, A. Dolfi, and J. Cariou, Aerosp. Sci. Technol. 6, 325 (2002). [CrossRef]
  6. C. J. Karlsson and F. A. Olsson, Appl. Opt. 38, 3376 (1999). [CrossRef]
  7. P. Adany, C. Allen, and R. Hui, J. Lightwave Technol. 27, 3351 (2009). [CrossRef]
  8. L. J. Mullen, A. J. C. Vieira, P. R. Herczfeld, and V. M. Contarino, IEEE T. Microw. Theory 43, 2370 (1995). [CrossRef]
  9. Y. Zhang, M. O’Sullivan, and R. Hui, Opt. Express 19, 21880 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited