OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 11 — Jun. 1, 2012
  • pp: 2109–2111

Tuning the detection sensitivity: a model for axial backfocal plane interferometric tracking

Lars Friedrich and Alexander Rohrbach  »View Author Affiliations

Optics Letters, Vol. 37, Issue 11, pp. 2109-2111 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (216 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Backfocal plane (BFP) interferometry is a single particle tracking technique that allows one to measure minute displacements of a microscopic particle from the center of a beam’s focus in three dimensions. In this Letter, we present a Fourier optics model to describe the interference effects that allow one to track the position of a particle moving along the optical axis. A detection numerical aperture is derived theoretically and confirmed experimentally, within which the interference intensity has a positive correlation with the axial position of the scatterer. For larger detection angles, the correlation is negative. The model helps to understand previously reported measurements and to optimize BFP interferometric tracking.

© 2012 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(140.7010) Lasers and laser optics : Laser trapping
(260.3160) Physical optics : Interference
(290.0290) Scattering : Scattering

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: January 3, 2012
Revised Manuscript: April 15, 2012
Manuscript Accepted: April 15, 2012
Published: June 1, 2012

Lars Friedrich and Alexander Rohrbach, "Tuning the detection sensitivity: a model for axial backfocal plane interferometric tracking," Opt. Lett. 37, 2109-2111 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Pralle, M. Prummer, E. Florin, E. Stelzer, and J. Hoerber, Microsc. Res. Tech. 44, 378 (1999). [CrossRef]
  2. A. Rohrbach and E. Stelzer, J. Appl. Phys. 91, 5474 (2002). [CrossRef]
  3. K. Neuman, E. Abbondazieri, R. Landick, J. Gelles, and S. Block, Cell 115, 437 (2003). [CrossRef]
  4. V. Bormuth, V. Varga, J. Howard, and E. Schaffer, Science 325, 870 (2009). [CrossRef]
  5. N. Becker, S. Altmann, T. Scholz, J. Hoerber, E. Stelzer, and A. Rohrbach, Phys. Rev. E 71, 021907 (2005). [CrossRef]
  6. F. Gittes and C. Schmidt, Opt. Lett. 23, 7 (1998). [CrossRef]
  7. A. Rohrbach, H. Kress, and E. Stelzer, Opt. Lett. 28, 411 (2003). [CrossRef]
  8. J. Dreyer, K. Berg-Sorensen, and L. Oddershede, Appl. Opt. 43, 1991 (2004). [CrossRef]
  9. A. Samadi and S. Reihani, Opt. Lett. 36, 4056 (2011). [CrossRef]
  10. J. Goodman, Introduction to Fourier Optics (Roberts and Company, 2005), Chap. 5, p. 103.
  11. B. Saleh and M. Teich, Fundamentals of Photonics (Wiley Interscience, 2007), Chap. 3, p. 74.
  12. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ., 1995), Chap. 3, p. 120.
  13. J. Harvey, Am. J. Phys. 47, 974 (1979). [CrossRef]
  14. L. Friedrich and A. Rohrbach, Opt. Lett. 35, 1920 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited