OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 11 — Jun. 1, 2012
  • pp: 2133–2135

Engineering the dispersion of metamaterial surface for broadband infrared absorption

Qin Feng, Mingbo Pu, Chenggang Hu, and Xiangang Luo  »View Author Affiliations

Optics Letters, Vol. 37, Issue 11, pp. 2133-2135 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (387 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a broadband infrared absorber by engineering the frequency dispersion of metamaterial surface (metasurface) to mimic an ideal absorbing sheet. With a thin layer of structured nichrome, a polarization-independent absorber with absorption larger than 97% is numerically demonstrated over a larger than one octave bandwidth. It is shown that the bandwidth enhancement is related with the transformation of the Drude model of free electron gas in metal film to the Lorentz oscillator model of a bound electron in the structured metallic surface. We believe that the concept of dispersion engineering may provide helpful guidance for the design of a broadband absorber.

© 2012 Optical Society of America

OCIS Codes
(040.3060) Detectors : Infrared
(310.3915) Thin films : Metallic, opaque, and absorbing coatings
(160.3918) Materials : Metamaterials

ToC Category:
Thin Films

Original Manuscript: February 22, 2012
Revised Manuscript: March 14, 2012
Manuscript Accepted: March 15, 2012
Published: June 1, 2012

Qin Feng, Mingbo Pu, Chenggang Hu, and Xiangang Luo, "Engineering the dispersion of metamaterial surface for broadband infrared absorption," Opt. Lett. 37, 2133-2135 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006). [CrossRef]
  2. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007). [CrossRef]
  3. E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, Nat. Mater. 10, 216 (2011). [CrossRef]
  4. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008). [CrossRef]
  5. T. K. M. Diem and C. M. Soukoulis, Phys. Rev. B 79, 033101 (2009). [CrossRef]
  6. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, Phys. Rev. Lett. 104, 207403 (2010). [CrossRef]
  7. Y. Q. Ye, Y. Jin, and S. He, J. Opt. Soc. Am. B 27, 498 (2010). [CrossRef]
  8. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, Phys. Rev. Lett. 107, 045901 (2011). [CrossRef]
  9. C. Wu and G. Shvets, Opt. Lett. 37, 308 (2012). [CrossRef]
  10. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, Opt. Lett. 36, 3476 (2011). [CrossRef]
  11. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, Opt. Lett. 37, 154 (2012). [CrossRef]
  12. M. Wang, C. Hu, M. Pu, C. Huang, Z. Zhao, Q. Feng, and X. Luo, Opt. Express 19, 20642 (2011). [CrossRef]
  13. K. B. Alici, A. B. Turhan, C. M. Soukoulis, and E. Ozbay, Opt. Express 19, 14260 (2011). [CrossRef]
  14. T. B. A. Senior, IEEE Trans. Antennas Propag. 29, 826 (1981). [CrossRef]
  15. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, Opt. Express 19, 17413 (2011). [CrossRef]
  16. G. Biener, A. Niv, V. Kleiner, and E. Hasman, Opt. Lett. 32, 994 (2007). [CrossRef]
  17. N. Engheta, Science 317, 1698 (2007). [CrossRef]
  18. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited