OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 12 — Jun. 15, 2012
  • pp: 2328–2330

Micromechanical photothermal spectroscopy of trace gases using functionalized polymers

T. H. Stievater, N. A. Papanicolaou, R. Bass, W. S. Rabinovich, and R. A. McGill  »View Author Affiliations

Optics Letters, Vol. 37, Issue 12, pp. 2328-2330 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (595 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a novel method to spectroscopically detect and identify trace gases. Micromechanical photothermal spectroscopy (MPS) with functionalized sorbent materials provides trace gas spectra in an optical interaction length of only a few micrometers. We use microcavity interferometry to read out displacements as low as 25fm/Hz, heating as low as 200pW/Hz, and analyte concentrations as low as 65 parts-per-billion for the nerve agent simulant DMMP. MPS integrated with functional materials represents an important new tool in chip-scale optical sensing.

OCIS Codes
(300.6430) Spectroscopy : Spectroscopy, photothermal
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:

Original Manuscript: February 16, 2012
Revised Manuscript: April 4, 2012
Manuscript Accepted: April 4, 2012
Published: June 8, 2012

T. H. Stievater, N. A. Papanicolaou, R. Bass, W. S. Rabinovich, and R. A. McGill, "Micromechanical photothermal spectroscopy of trace gases using functionalized polymers," Opt. Lett. 37, 2328-2330 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. R. Barnes, R. J. Stephenson, M. E. Welland, C. Gerber, and J. K. Gimzewski, Nature 372, 79 (1994). [CrossRef]
  2. P. G. Datskos, S. Rajic, M. J. Sepaniak, N. Lavrik, C. A. Tipple, L. R. Senesac, and I. Datskou, J. Vac. Sci. Technol. B 19, 1173 (2001). [CrossRef]
  3. A. Wig, E. Arakawa, A. Passian, T. Ferrell, and T. Thundat, Sens. Actuators B 114, 206 (2006). [CrossRef]
  4. A. R. Krause, C. V. Neste, L. Senesac, T. Thundat, and E. Finot, J. Appl. Phys. 103, 094906 (2008). [CrossRef]
  5. R. T. Howe and R. S. Muller, IEEE Trans. Electron Devices 33, 499 (1986). [CrossRef]
  6. N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, Rev. Sci. Instrum. 75, 2229 (2004). [CrossRef]
  7. T. H. Stievater, W. S. Rabinovich, M. S. Ferraro, N. A. Papanicolaou, J. B. Boos, R. A. McGill, and J. L. Stepnowski, Appl. Phys. Lett. 89, 091125 (2006). [CrossRef]
  8. T. H. Stievater, W. S. Rabinovich, H. S. Newman, J. L. Ebel, R. Mahon, D. J. McGee, and P. G. Goetz, J. Microelectromech. Syst. 12, 109 (2003). [CrossRef]
  9. B. A. Higgins, D. L. Simonson, E. J. Houser, J. G. Kohl, and R. A. Mcgill, J. Polym. Sci., Part A: Polym. Chem. 48, 3000 (2010). [CrossRef]
  10. T. B. Gabrielson, IEEE Trans. Electron Devices 40, 903 (1993). [CrossRef]
  11. T. H. Stievater, W. S. Rabinovich, H. S. Newman, R. Mahon, D. McGee, and P. G. Goetz, Appl. Phys. Lett. 81, 1779 (2002). [CrossRef]
  12. I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, New J. Phys. 11, 125015 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited