OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 12 — Jun. 15, 2012
  • pp: 2349–2351

Time- and wavelength-interleaved optical pulse train generation based on dispersion spreading and sectional compression

Huy Quoc Lam, Kenneth Eng Kian Lee, and Peng Huei Lim  »View Author Affiliations

Optics Letters, Vol. 37, Issue 12, pp. 2349-2351 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (292 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method to generate time- and wavelength-interleaved optical pulse trains based on dispersion spreading and sectional compression is proposed and demonstrated. A 4×2GHz time- and wavelength-interleaved pulse train is generated from an input 2 GHz mode-locked pulse train. The advantages of the proposed scheme are its simplicity and robustness, since no microwave component or multiwavelength laser source is required. In addition, we demonstrate supercontinuum generation of an ultraflat 18 nm bandwidth spectrum with less than 0.5 dB fluctuation over the 3.2 nm central bandwidth.

© 2012 Optical Society of America

OCIS Codes
(060.2380) Fiber optics and optical communications : Fiber optics sources and detectors
(220.4830) Optical design and fabrication : Systems design
(320.5540) Ultrafast optics : Pulse shaping
(140.3538) Lasers and laser optics : Lasers, pulsed
(250.4745) Optoelectronics : Optical processing devices
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 7, 2012
Revised Manuscript: April 13, 2012
Manuscript Accepted: April 24, 2012
Published: June 11, 2012

Huy Quoc Lam, Kenneth Eng Kian Lee, and Peng Huei Lim, "Time- and wavelength-interleaved optical pulse train generation based on dispersion spreading and sectional compression," Opt. Lett. 37, 2349-2351 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. C. Valley, Opt. Express 15, 1955 (2007). [CrossRef]
  2. F. X. Kartner, R. Amatya, M. Araghchini, J. Birge, H. Byun, J. Chen, M. Dahlem, N. A. DiLello, F. Gan, C. W. Holzwarth, J. L. Hoyt, E. P. Ippen, A. Khilo, J. Kim, M. Kim, A. Motamedi, J. S. Orcutt, M. Park, M. Perrott, M. A. Popovic, R. J. Ram, H. I. Smith, G. R. Zhou, S. J. Spector, T. M. Lyszczarz, M. W. Geis, D. M. Lennon, J. U. Yoon, M. E. Grein, and R. T. Schulein, Proc. SPIE 6898, 689806 (2008).
  3. P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microw. Theory Tech. 49, 1840 (2001). [CrossRef]
  4. A. Yariv and R. Koumans, Electron. Lett. 34, 2012 (1998). [CrossRef]
  5. J. van Howe, J. Hansryd, and C. Xu, Opt. Lett. 29, 1470 (2004). [CrossRef]
  6. X. Fu, H. M. Zhang, Y. Peng, and M. Y. Yao, Opt. Eng. 48, 104302 (2009). [CrossRef]
  7. K. L. Lee, M. P. Fok, and C. Shu, Opt. Commun. 251, 149 (2005). [CrossRef]
  8. C. M. Ouyang, P. P. Shum, K. Wu, J. H. Wong, X. Wu, H. Q. Lam, and S. Aditya, IEEE Photon. J. 3, 881 (2011). [CrossRef]
  9. S. Ramachandran, S. Ghalmi, S. Chandrasekhar, I. Ryazansky, M. F. Yan, F. V. Dimarcello, W. A. Reed, and P. Wisk, IEEE Photon. Technol. Lett. 15, 727(2003). [CrossRef]
  10. G. H. Lee, S. J. Xiao, and A. M. Weiner, IEEE Photon. Technol. Lett. 18, 1819 (2006). [CrossRef]
  11. X. W. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. J. Huang, I. Khrushchev, and I. Bennion, IEEE Photon. Technol. Lett. 15, 1111 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited