OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 12 — Jun. 15, 2012
  • pp: 2361–2363

Complex-envelope alternating-direction-implicit FDTD method for simulating active photonic devices with semiconductor/solid-state media

Gurpreet Singh, Koustuban Ravi, Qian Wang, and Seng-Tiong Ho  »View Author Affiliations

Optics Letters, Vol. 37, Issue 12, pp. 2361-2363 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (182 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A complex-envelope (CE) alternating-direction-implicit (ADI) finite-difference time-domain (FDTD) approach to treat light–matter interaction self-consistently with electromagnetic field evolution for efficient simulations of active photonic devices is presented for the first time (to our best knowledge). The active medium (AM) is modeled using an efficient multilevel system of carrier rate equations to yield the correct carrier distributions, suitable for modeling semiconductor/solid-state media accurately. To include the AM in the CE-ADI-FDTD method, a first-order differential system involving CE fields in the AM is first set up. The system matrix that includes AM parameters is then split into two time-dependent submatrices that are then used in an efficient ADI splitting formula. The proposed CE-ADI-FDTD approach with AM takes 22% of the time as the approach of the corresponding explicit FDTD, as validated by semiconductor microdisk laser simulations.

© 2012 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(130.0250) Integrated optics : Optoelectronics

ToC Category:
Numerical Methods

Original Manuscript: February 29, 2012
Revised Manuscript: April 19, 2012
Manuscript Accepted: April 20, 2012
Published: June 12, 2012

Gurpreet Singh, Koustuban Ravi, Qian Wang, and Seng-Tiong Ho, "Complex-envelope alternating-direction-implicit FDTD method for simulating active photonic devices with semiconductor/solid-state media," Opt. Lett. 37, 2361-2363 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. S. Nagra and R. A. York, IEEE Trans. Antennas Propagat. 46, 334 (1998). [CrossRef]
  2. K. Bohringer and O. Hess, Progr. Quantum Electron. 32, 247 (2008). [CrossRef]
  3. Y. Huang and S. T. Ho, Opt. Express 14, 3569 (2006). [CrossRef]
  4. E. L. Tan, IEEE Trans. Antennas Propagat. 56, 170(2008). [CrossRef]
  5. H. Rao, R. Scarmozzino, and R. M. Osgood, IEEE Photon. Technol. Lett. 14, 477 (2002). [CrossRef]
  6. C. Ma and Z. Chen, IEEE Trans. Antennas Propagat. 53, 971 (2005). [CrossRef]
  7. K.-Y. Jung, F. L. Teixeira, and R. Lee, IEEE Antennas Wireless Propagat. Lett. 6, 643 (2007). [CrossRef]
  8. D. Pinto and S. S. A. Obayya, J. Lightwave Technol. 25, 440 (2007). [CrossRef]
  9. S.-H. Sun and C. T. M. Choi, IEEE Microw. Wireless Compon. Lett. 17, 253 (2007). [CrossRef]
  10. K.-Y. Jung and F. L. Teixeira, Phys. Rev. B 77, 125108 (2008). [CrossRef]
  11. G. Singh, E. L. Tan, and Z. N. Chen, Opt. Lett. 36, 1494 (2011). [CrossRef]
  12. Q. Wang and S.-T. Ho. J. Lightwave Technol. 29, 1453 (2011). [CrossRef]
  13. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited