OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 12 — Jun. 15, 2012
  • pp: 2406–2408

Broadband laser enhanced dual-beam interferometry

V. V. Goncharov and G. E. Hall  »View Author Affiliations

Optics Letters, Vol. 37, Issue 12, pp. 2406-2408 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (312 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a dual-beam, balanced detector approach, compatible with commercial Fourier transform infrared spectrometers that provide a single modulated output. Implemented with a near-IR mode-locked fiber laser source and an external broadband polarizing beamsplitter, the dual-beam method provides relative intensity noise reduction and real-time baseline drift cancellation. Noise levels within a factor of three above the shot noise limit (using 0.6 mW of optical power) are demonstrated for the weak second overtone of CO. The method should be particularly well suited for applications like broadband spectroscopy using a large fraction of the supercontinuum generated in a highly nonlinear fiber, and attenuated reflection spectroscopy, for which extreme pathlength enhancement is challenging.

© 2012 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(140.3500) Lasers and laser optics : Lasers, erbium
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

ToC Category:

Original Manuscript: February 13, 2012
Revised Manuscript: April 29, 2012
Manuscript Accepted: May 24, 2012
Published: June 13, 2012

V. V. Goncharov and G. E. Hall, "Broadband laser enhanced dual-beam interferometry," Opt. Lett. 37, 2406-2408 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Mandon, G. Guelachvili, and N. Picque, Nat. Photon. 3, 99 (2009). [CrossRef]
  2. W. Denzer, G. Hancock, M. Islam, C. E. Langley, R. Peverall, G. A. D. Ritchie, and D. Taylor, Analyst 136, 801 (2011). [CrossRef]
  3. A. Foltynowicz, P. Maslowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, Faraday Discuss. 150, 23 (2011). [CrossRef]
  4. X. d. G. d. E. Vaernewijck, K. Didriche, C. Lauzin, A. Rizopoulos, M. Herman, and S. Kassi, Mol. Phys. 109, 2173 (2011). [CrossRef]
  5. A. Foltynowicz, T. Ban, P. Maslowski, F. Adler, and J. Ye, Phys. Rev. Lett. 107, 233002 (2011). [CrossRef]
  6. J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (Springer, 2004).
  7. R. R. Alfano, The Supercontinuum Laser Source, 2nd ed. (Springer, 2006).
  8. F. Adler, P. Maslowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, Opt. Express 18, 21861 (2010). [CrossRef]
  9. C. A. Michaels, T. Masiello, and P. M. Chu, Appl. Spectrosc. 63, 538 (2009). [CrossRef]
  10. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003). [CrossRef]
  11. I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008). [CrossRef]
  12. K. Tamura, “Additive pulse mode-locked erbium-doped fiber lasers,” Ph.D. thesis (MIT, 1994).
  13. S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Academic, 2001).
  14. J. Mandon, G. Guelachvili, N. Picque, F. Druon, and P. Georges, Opt. Lett. 32, 1677 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited