Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Printing of polymer microlenses by a pyroelectrohydrodynamic dispensing approach

Not Accessible

Your library or personal account may give you access

Abstract

The investigation of a method for fabricating microlenses by a nozzle-free inkjet printing approach is reported. The new method, based on a pyroelectrohydrodynamic mechanism, is also able to dispense viscous liquids and to draw liquid phase drops directly from the reservoir. Specifically, by dispensing optical grade polymer dissolved in different solvent mixtures, microlenses were printed with a pattern defined directly through this deposition method. The reliability of the microlenses and the tunability of their focal properties were demonstrated through profilometric and inteferometric analyses.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Graded-size microlens array by the pyro-electrohydrodynamic continuous printing method

I. A. Grimaldi, S. Coppola, F. Loffredo, F. Villani, G. Nenna, C. Minarini, V. Vespini, L. Miccio, S. Grilli, and P. Ferraro
Appl. Opt. 52(32) 7699-7705 (2013)

Dispensed polymer waveguides and laser-fabricated couplers for optical interconnects on printed circuit boards

Yongzhang Leng, Victor Yun, Lisa Lucas, Warren N. Herman, and Julius Goldhar
Appl. Opt. 46(4) 602-610 (2007)

Arrays of microlenses with variable focal lengths fabricated by restructuring polymer surfaces with an ink-jet device

Ramon Pericet-Camara, Andreas Best, Sebastian K. Nett, Jochen S. Gutmann, and Elmar Bonaccurso
Opt. Express 15(15) 9877-9882 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved