OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 37, Iss. 13 — Jul. 1, 2012
  • pp: 2484–2486

Radial coherent and intelligent states of paraxial wave equation

Ebrahim Karimi and Enrico Santamato  »View Author Affiliations


Optics Letters, Vol. 37, Issue 13, pp. 2484-2486 (2012)
http://dx.doi.org/10.1364/OL.37.002484


View Full Text Article

Enhanced HTML    Acrobat PDF (411 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ladder operators for the radial index of the paraxial optical modes in the cylindrical coordinates are calculated. The operators obey the su(1,1) algebra commutation relations. Based on this Lie algebra, we found that coherent modes constructed as eigenstates of the destruction operator or resulting from the action of the displacement operator on the fundamental mode are different. Some properties of these two kinds of radial coherent modes are studied in detail.

© 2012 Optical Society of America

OCIS Codes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(080.3645) Geometric optics : Lie algebraic and group methods
(260.6042) Physical optics : Singular optics

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: March 27, 2012
Manuscript Accepted: April 21, 2012
Published: June 19, 2012

Citation
Ebrahim Karimi and Enrico Santamato, "Radial coherent and intelligent states of paraxial wave equation," Opt. Lett. 37, 2484-2486 (2012)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-37-13-2484


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Franke-Arnold, L. Allen, and M. J. Padgett, Laser Photon. Rev. 2, 299 (2008). [CrossRef]
  2. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pasko, S. M. Barnett, and S. Franke-Arnold, Opt. Express 12, 5448 (2004). [CrossRef]
  3. A. Mair, A. Vaziri, G. Welhs, and A. Zeilinger, Nature 412, 313 (2001). [CrossRef]
  4. E. Nagali, L. Sansoni, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, Nat. Photon. 3, 720 (2009). [CrossRef]
  5. E. Karimi, S. Sluserenko, B. Piccirillo, L. Marrucci, and E. Santamato, Phys. Rev. A 81, 053813 (2010). [CrossRef]
  6. M. Padgett, J. Courtial, and L. Allen, Phys. Today 57(5), 35 (2004). [CrossRef]
  7. M. V. Berry, J. Opt. A 6, 259 (2004). [CrossRef]
  8. A. Ya. Bekshaev and A. I. Karamoch, Opt. Commun. 281, 1366 (2008). [CrossRef]
  9. E. Karimi, G. Zito, B. Piccirillo, L. Marrucci, and E. Santamato, Opt. Lett. 32, 3053 (2007). [CrossRef]
  10. E. Karimi, B. Piccirillo, L. Marrucci, and E. Santamato, Opt. Lett. 34, 1225 (2009). [CrossRef]
  11. E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, Appl. Phys. Lett. 94, 231124 (2009). [CrossRef]
  12. G. Molina-Terriza, L. Rebane, J. P. Torres, L. Torner, and S. Carrasco, J. Eur. Opt. Soc. Rapid Pub. 2, 07014(2007). [CrossRef]
  13. A. Perelomov, Generalized Coherent States and Their Applications (Springer, 1986).
  14. E. Schrödinger, Naturwissenschaften 14, 664 (1926). [CrossRef]
  15. A. O. Barut and L. Girardello, Commun. Math. Phys. 21, 41 (1971). [CrossRef]
  16. The following dimensionless cylindrical and Cartesian coordinates have been used: (ρ=r/w0, ϕ, ζ=z/zR) and (u=x/w0, v=y/w0, ζ=z/zR), respectively, where w0 is the beam waist and zR=πw02/λ is the beam Rayleigh range.
  17. A. E. Siegman, Lasers (University Science Books, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited