OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 37, Iss. 13 — Jul. 1, 2012
  • pp: 2622–2624

Optical fiber strain sensor using fiber resonator based on frequency comb Vernier spectroscopy

Liang Zhang, Ping Lu, Li Chen, Chaoran Huang, Deming Liu, and Shibin Jiang  »View Author Affiliations

Optics Letters, Vol. 37, Issue 13, pp. 2622-2624 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (403 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel (to our best knowledge) optical fiber strain sensor using a fiber ring resonator based on frequency comb Vernier spectroscopy is proposed and demonstrated. A passively mode-locked optical fiber laser is employed to generate a phased-locked frequency comb. Strain applied to the optical fiber of the fiber ring resonator can be measured with the transmission spectrum. A good linearity is obtained between displacement and the inverse of wavelength spacing with an R2 of 0.9989, and high sensitivities better than 40pm/με within the range of 0 to 10με are achieved. The sensitivity can be proportionally improved by increasing the length of the optical fiber ring resonator.

© 2012 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.4780) Lasers and laser optics : Optical resonators
(300.6360) Spectroscopy : Spectroscopy, laser

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 20, 2012
Revised Manuscript: April 9, 2012
Manuscript Accepted: April 17, 2012
Published: June 25, 2012

Liang Zhang, Ping Lu, Li Chen, Chaoran Huang, Deming Liu, and Shibin Jiang, "Optical fiber strain sensor using fiber resonator based on frequency comb Vernier spectroscopy," Opt. Lett. 37, 2622-2624 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997). [CrossRef]
  2. C. K. Kirkendall and A. Dandridge, J. Phys. D 37, 197 (2004). [CrossRef]
  3. F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, Annu. Rev. Anal. Chem. 3, 175 (2010). [CrossRef]
  4. M. J. Thorpe and J. Ye, Appl. Phys. B 91, 397 (2008). [CrossRef]
  5. K. C. Cossel, F. Adler, K. A. Bertness, M. J. Thorpe, J. Feng, M. W. Raynor, and J. Ye, Appl. Phys. B 100, 917 (2010). [CrossRef]
  6. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, Science 311, 1595 (2006). [CrossRef]
  7. M. J. Thorpe, F. Adler, K. C. Cossel, M. H. G. de Miranda, and J. Ye, Chem. Phys. Lett. 468, 1 (2009). [CrossRef]
  8. M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, Opt. Express 16, 2387 (2008). [CrossRef]
  9. Y. Bitou, T. R. Schibli, and K. Minoshima, Opt. Express 14, 644 (2006). [CrossRef]
  10. T. Gherman and D. Romanini, Opt. Express 10, 1033 (2002).
  11. A. Schliesser, C. Gohle, T. Udem, and T. W. Hänsch, Opt. Express 14, 5975 (2006). [CrossRef]
  12. C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, Phys. Rev. Lett. 99, 263902 (2007). [CrossRef]
  13. L. F. Stokes, M. Chodorow, and H. J. Shaw, Opt. Lett. 7, 288 (1982). [CrossRef]
  14. M. A. Zumberge and F. K. Wyatt, Pure Appl. Geophys. 152, 221 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited