OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 37, Iss. 13 — Jul. 1, 2012
  • pp: 2736–2738

Decay rates modification through coupling of degenerate surface plasmon modes

Hau-Yung Lo and Hock-Chun Ong  »View Author Affiliations


Optics Letters, Vol. 37, Issue 13, pp. 2736-2738 (2012)
http://dx.doi.org/10.1364/OL.37.002736


View Full Text Article

Enhanced HTML    Acrobat PDF (469 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We measured the decay rates of two degenerate surface plasmon modes in Au nanohole arrays with different hole sizes by angle-resolved reflectivity spectroscopy. For each hole size, at the spectral region where resonant coupling occurs, we observed a large modification in decay rates, leading to the formation of dark and bright modes. The change in decay rates is well explained by temporal coupled mode theory. The deduced coupling constant is found to increase with increasing hole diameter. This study provides us a simple and effective means to control the decay rates of dark and bright modes, which are useful in plasmonic applications.

© 2012 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(290.3700) Scattering : Linewidth
(230.4555) Optical devices : Coupled resonators

ToC Category:
Optics at Surfaces

History
Original Manuscript: February 7, 2012
Revised Manuscript: April 16, 2012
Manuscript Accepted: May 10, 2012
Published: June 28, 2012

Citation
Hau-Yung Lo and Hock-Chun Ong, "Decay rates modification through coupling of degenerate surface plasmon modes," Opt. Lett. 37, 2736-2738 (2012)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-37-13-2736


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, Phys. Rev. Lett. 94, 113901 (2005). [CrossRef]
  2. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, Nano Lett. 4, 899 (2004). [CrossRef]
  3. F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, ACS Nano 3, 643 (2009). [CrossRef]
  4. Y. Chu and K. B. Crozier, Opt. Lett. 34, 244 (2009). [CrossRef]
  5. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, Nano Lett. 8, 3983 (2008). [CrossRef]
  6. Y. Chu, M. G. Banaee, and K. B. Crozier, ACS Nano 4, 2804 (2010). [CrossRef]
  7. M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, Phys. Rev. Lett. 102, 107401 (2009). [CrossRef]
  8. D. Y. Lei, J. Li, A. I. Fernandez-Dominguez, H. C. Ong, and S. A. Maier, ACS Nano 4, 432 (2010). [CrossRef]
  9. H. A. Haus, Waves and Fields in Optoelectronics(Prentice-Hall, 1984).
  10. Y. Chan, J. B. Xu, M. Y. Waye, and H. C. Ong, Appl. Phys. Lett. 96, 033104 (2010). [CrossRef]
  11. J. Li, H. Iu, D. Y. Lei, J. T. K. Wan, J. B. Xu, H. P. Ho, M. Y. Waye, and H. C. Ong, Appl. Phys. Lett. 94, 183112 (2009). [CrossRef]
  12. P. B. Johnson and R. W. Chirty, Phys. Rev. B 6, 4370 (1972). [CrossRef]
  13. U. Fano and J. Cooper, Phys. Rev. 137, A1364 (1965). [CrossRef]
  14. S. H. Chang, S. Gray, and G. Schatz, Opt. Express 13, 3150 (2005). [CrossRef]
  15. M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, Phys. Rev. B 67, 085415 (2003). [CrossRef]
  16. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, Phys. Rev. B 77, 115437 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited