OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 14 — Jul. 15, 2012
  • pp: 2802–2804

Speckle-metric-optimization-based adaptive optics for laser beam projection and coherent beam combining

Mikhail Vorontsov, Thomas Weyrauch, Svetlana Lachinova, Micah Gatz, and Gary Carhart  »View Author Affiliations

Optics Letters, Vol. 37, Issue 14, pp. 2802-2804 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (318 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Maximization of a projected laser beam’s power density at a remotely located extended object (speckle target) can be achieved by using an adaptive optics (AO) technique based on sensing and optimization of the target-return speckle field’s statistical characteristics, referred to here as speckle metrics (SM). SM AO was demonstrated in a target-in-the-loop coherent beam combining experiment using a bistatic laser beam projection system composed of a coherent fiber-array transmitter and a power-in-the-bucket receiver. SM sensing utilized a 50 MHz rate dithering of the projected beam that provided a stair-mode approximation of the outgoing combined beam’s wavefront tip and tilt with subaperture piston phases. Fiber-integrated phase shifters were used for both the dithering and SM optimization with stochastic parallel gradient descent control.

© 2012 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1285) Atmospheric and oceanic optics : Atmospheric correction
(140.3298) Lasers and laser optics : Laser beam combining

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 9, 2012
Manuscript Accepted: May 2, 2012
Published: July 4, 2012

Mikhail Vorontsov, Thomas Weyrauch, Svetlana Lachinova, Micah Gatz, and Gary Carhart, "Speckle-metric-optimization-based adaptive optics for laser beam projection and coherent beam combining," Opt. Lett. 37, 2802-2804 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Perram, S. Cusumano, R. Hengehold, and S. Fiorino, An Introduction to Laser Weapon Systems (DEPS, 2010).
  2. P. Merritt, Beam Control for Laser Systems (DEPS, 2011).
  3. T. R. O’Meara, J. Opt. Soc. Am. 67, 306 (1977). [CrossRef]
  4. M. Vorontsov, V. Kolosov, and A. Kohnle, J. Opt. Soc. Am. A 24, 1975 (2007). [CrossRef]
  5. J. Pearson, S. Kokorowski, and M. Pedinoff, J. Opt. Soc. Am. 66, 1261 (1976). [CrossRef]
  6. M. Vorontsov, V. Karnaukhov, A. Kuz’minskii, and V. Shmal’gauzen, Sov. J. Quantum Electron. 14, 761 (1984). [CrossRef]
  7. P. Piatrou and M. Roggemann, Appl. Opt. 46, 6831 (2007). [CrossRef]
  8. M. Vorontsov, Target in the Loop Propagation in Random Media (FGAN FOM, 2004).
  9. M. Vorontsov and G. Carhart, Opt. Lett. 27, 2155 (2002). [CrossRef]
  10. J.R. Leger, J. Nilsson, J.P. Huignard, A. Napartovich, T.M. Shay, and A. Shirakawa, eds., IEEE J. Sel. Top. Quantum Electron. 15, 237 (2009). [CrossRef]
  11. M. Vorontsov, V. Kolosov, and E. Polnau, Appl. Opt. 48, A13 (2009). [CrossRef]
  12. M. Vorontsov, G. Carhart, and J. Ricklin, Opt. Lett. 22, 907 (1997). [CrossRef]
  13. R. Muller and A. Buffington, J. Opt. Soc. Am. 64, 1200 (1974). [CrossRef]
  14. V. Dudorov, M. Vorontsov, and V. Kolosov, J. Opt. Soc. Am. A 23, 1924 (2006). [CrossRef]
  15. T. Weyrauch, M. Vorontsov, G. Carhart, L. Beresnev, A. Rostov, E. Polnau, and J. Liu, Opt. Lett. 36, 4455 (2011). [CrossRef]
  16. Optonicus, http://www.optonicus.com .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited