OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 14 — Jul. 15, 2012
  • pp: 2841–2843

Optically compensated dual-polarization interferometric fiber-optic gyroscope

Yi Yang, Zinan Wang, and Zhengbin Li  »View Author Affiliations

Optics Letters, Vol. 37, Issue 14, pp. 2841-2843 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (285 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We first introduce optical compensation into the field of interferometric fiber-optic gyroscopes (IFOGs), using the opposite polarity of the disturbance between two orthogonal polarization states to suppress polarization-fluctuation-induced noise. A dual-polarized IFOG, in which the fast and slow axes of polarization-maintaining fiber work simultaneously, is implemented and tested. Interference signals of the two axes are added to achieve optical compensation. Experiments show that the IFOG’s sensitivity is effectively enhanced in compensated output: all Allan variance indices are improved, among which bias instability is reduced from 0.335 and 0.227deg/h (fast and slow axes output, respectively) to 0.061deg/h.

© 2012 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining
(060.2800) Fiber optics and optical communications : Gyroscopes

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 23, 2012
Revised Manuscript: May 24, 2012
Manuscript Accepted: May 25, 2012
Published: July 10, 2012

Yi Yang, Zinan Wang, and Zhengbin Li, "Optically compensated dual-polarization interferometric fiber-optic gyroscope," Opt. Lett. 37, 2841-2843 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. J. Post, Rev. Mod. Phys. 39, 475 (1967). [CrossRef]
  2. F. L. Walls and D. W. Allan, Proc. IEEE 74, 162 (1986). [CrossRef]
  3. G. A. Pavlath, Proc. SPIE 2837, 46 (1996). [CrossRef]
  4. R. A. Bergh, H. C. Lefevre, and H. J. Shaw, J. Lightwave Technol. 2, 91 (1984). [CrossRef]
  5. R. A. Bergh, H. C. Lefevre, and H. J. Shaw, Opt. Lett. 6, 198 (1981). [CrossRef]
  6. R. A. Bergh, H. C. Lefevre, and H. J. Shaw, Opt. Lett. 6, 502 (1981). [CrossRef]
  7. B. Szafraniec and G. A. Sanders, J. Lightwave Technol. 17, 579 (1999). [CrossRef]
  8. Y. Yang, Z. Wang, L. Xu, C. Wang, L. Jia, X. Yu, S. Shao, and Z. Li, Proc. SPIE 8191, 81910A (2011). [CrossRef]
  9. V. M. Gelikonov, G. V. Gelikonov, and I. A. Andronova, Radiophys. Quantum Electron. 51, 296 (2008). [CrossRef]
  10. I. A. Andronova and G. B. Malykin, Phys. Usp. 45, 793 (2002). [CrossRef]
  11. R. Ulrich, in Fiber-Optic Rotation Sensor and Related Technologies (Springer-Verlag, 1982), pp. 52–77.
  12. H. C. Lefevre, The Fiber-Optic Gyroscope (Artech House, 1993).
  13. G. Zhang, The Principles and Technologies of Fiber-Optic Gyroscope (National Defense Industry Press, 2008) (in Chinese).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited