OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 14 — Jul. 15, 2012
  • pp: 2847–2849

Highly sensitive laser-based sensor for nanoparticles in air using a dual-ring-mirror setup

Robert Schrobenhauser, Rainer Strzoda, Maximilian Fleischer, and Markus-Christian Amann  »View Author Affiliations

Optics Letters, Vol. 37, Issue 14, pp. 2847-2849 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (337 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



One of the most frequently applied techniques to detect nanoparticles in air is analyzing laser light scattering. This technique is very flexible while offering high accuracy and reliability. Yet its functionality highly depends on the sensitivity of the measurement system components. Especially for miniaturized sensor devices with limited space, additional techniques are needed to preserve high intensity of scattered light. In our work we demonstrate a technique using two spherical ring mirrors to identify nanoparticles with diameters below 100 nm in a forward-scattering setup. We succeeded measuring polystyrene particles with diameters of 92 nm with a signal-to-noise-ratio of more than 10.

© 2012 Optical Society of America

OCIS Codes
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(220.4830) Optical design and fabrication : Systems design
(290.5850) Scattering : Scattering, particles
(290.2558) Scattering : Forward scattering

ToC Category:

Original Manuscript: February 13, 2012
Revised Manuscript: May 14, 2012
Manuscript Accepted: May 28, 2012
Published: July 10, 2012

Robert Schrobenhauser, Rainer Strzoda, Maximilian Fleischer, and Markus-Christian Amann, "Highly sensitive laser-based sensor for nanoparticles in air using a dual-ring-mirror setup," Opt. Lett. 37, 2847-2849 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. L. Black, M. Q. McQuay, and M. P. Bonin, Prog. Energy Combust. Sci. 22, 267 (1996).
  2. C. Tropea, Annu. Rev. Fluid Mech. 43, 399 (2011). [CrossRef]
  3. M. Heim, B. J. Mullins, H. Umhauer, and G. Kasper, J. Aerosol Sci. 39, 1019 (2008). [CrossRef]
  4. L. He, S. K. Özdemir, J. Zhu, W. Kim, and L. Yang, Nature Nanotech. 6, 428 (2011). [CrossRef]
  5. H. Li, Y. Guo, Y. Sun, K. Reddy, and X. Fan, Opt. Express 18, 25081 (2010). [CrossRef]
  6. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photon. 4, 46 (2010). [CrossRef]
  7. A. Yurt, G. G. Daaboul, J. H. Connor, B. B. Goldberg, and M. S. ÜnlüNanoscale 4, 715 (2012). [CrossRef]
  8. N. Noeth, S. S. Keller, and A. Boisen, J. Micromech. Microeng. 21, 054022 (2011). [CrossRef]
  9. R. Burnett, J. Brook, T. Dann, C. Delocla, O. Philips, S. Cakmak, R. Vincent, M. Goldberg, and D. Krewski, Inhal. Toxicol. 12, 15 (2000). [CrossRef]
  10. M. Lin, Y. Chen, R. Burnett, P. Villeneuve, and D. Krewski, Environ. Health Persp. 110, 575 (2002). [CrossRef]
  11. R. Harrison and J. Yin, Sci. Total Environ. 249, 85 (2000). [CrossRef]
  12. C. Hentschel, Fiber Optics Handbook: An Introduction and Reference Guide to Fiber Optic Technology and Measurement Techniques (Hewlett-Packard GmbH, 1989).
  13. G. Sem, Atmos. Res. 62, 267 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited