OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 14 — Jul. 15, 2012
  • pp: 2850–2852

Optimized light–matter interaction and defect hole placement in photonic crystal cavity sensors

Christopher Kang, Sharon M. Weiss, Yurii A. Vlasov, and Solomon Assefa  »View Author Affiliations

Optics Letters, Vol. 37, Issue 14, pp. 2850-2852 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (278 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photonic crystal slab cavities were investigated for increased light–matter interaction based on selective placement of sublattice hole sized defect holes inside L3 cavities. A multiple-hole defect (MHD) consisting of three defect holes placed in the regions of highest cavity mode field intensity were demonstrated through finite-difference time-domain simulations and experiments to exhibit the strongest light–matter interaction without introducing significant scattering losses. Compared to an L3 cavity without defect holes, these strategically designed three-hole MHD cavities presented higher quality factor and more than double the resonance wavelength shift upon exposure to a thin oxide and two small chemical molecules.

© 2012 Optical Society of America

OCIS Codes
(130.6010) Integrated optics : Sensors
(230.5750) Optical devices : Resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

Original Manuscript: February 29, 2012
Revised Manuscript: May 25, 2012
Manuscript Accepted: June 1, 2012
Published: July 10, 2012

Christopher Kang, Sharon M. Weiss, Yurii A. Vlasov, and Solomon Assefa, "Optimized light–matter interaction and defect hole placement in photonic crystal cavity sensors," Opt. Lett. 37, 2850-2852 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003). [CrossRef]
  2. H. Takano, Y. Akahane, T. Asano, and S. Noda, Appl. Phys. Lett. 84, 2226 (2004). [CrossRef]
  3. Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, Opt. Express 15, 17206 (2007). [CrossRef]
  4. M. Loncar, A. Scherer, and Y. Qiu, Appl. Phys. Lett. 82, 4648 (2003). [CrossRef]
  5. M. Lee and P. M. Fauchet, Opt. Express 15, 4530 (2007). [CrossRef]
  6. M. R. Lee and P. M. Fauchet, Opt. Lett. 32, 3284 (2007). [CrossRef]
  7. C. Kang, C. T. Phare, Y. A. Vlasov, S. Assefa, and S. M. Weiss, Opt. Express 18, 27930 (2010). [CrossRef]
  8. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, Opt. Lett. 29, 1209 (2004). [CrossRef]
  9. J. Gao, X. Yang, C. W. Wong, W. M. J. Green, Y. Vlasov, and S. Assefa, in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CFE5.
  10. B. Hatton, V. Kitaev, D. Perovic, G. Ozin, and J. Aizenberg, J. Mat. Chem. 20, 6009 (2010). [CrossRef]
  11. X. Wei, C. Kang, M. Liscidini, G. Rong, S. T. Retterer, M. Patrini, J. E. Sipe, and S. M. Weiss, J. Appl. Phys. 104, 123113 (2008). [CrossRef]
  12. G. Rong, J. D. Ryckman, R. L. Mernaugh, and S. M. Weiss, Appl. Phys. Lett. 93, 161109 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited