OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 14 — Jul. 15, 2012
  • pp: 2859–2861

Dual-polarization mode-locked Nd:YAG laser

J. Thévenin, M. Vallet, and M. Brunel  »View Author Affiliations

Optics Letters, Vol. 37, Issue 14, pp. 2859-2861 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (520 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A mode-locked solid-state laser containing a birefringent element is shown to emit synchronously two frequency combs associated to the two polarization eigenstates of the cavity. An analytical model predicts the polarization evolution of the pulse train, which is determined by the adjustable intracavity birefringence. Experiments realized with a Nd:YAG laser passively mode locked by a semiconductor saturable absorber mirror are in perfect agreement with the model. Locking between the two combs arises for particular values of their frequency difference, e.g., half the repetition rate, and the pulse train polarization sequence is then governed by the relative overall phase offset of the two combs.

© 2012 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.4050) Lasers and laser optics : Mode-locked lasers
(260.5430) Physical optics : Polarization
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 4, 2012
Manuscript Accepted: May 14, 2012
Published: July 10, 2012

J. Thévenin, M. Vallet, and M. Brunel, "Dual-polarization mode-locked Nd:YAG laser," Opt. Lett. 37, 2859-2861 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000). [CrossRef]
  2. W. H. Loh, Y. Ozeki, and C. L. Tang, Appl. Phys. Lett. 56, 2613 (1990). [CrossRef]
  3. J. Javaloyes, J. Mulet, and S. Balle, Phys. Rev. Lett. 97, 163902 (2006). [CrossRef]
  4. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  5. S. T. Cundiff, B. C. Collings, and W. H. Knox, Opt. Express 1, 12 (1997). [CrossRef]
  6. L. M. Zhao, D. Y. Tang, X. Wu, H. Zhang, and H. Y. Tam, Opt. Lett. 34, 3059 (2009). [CrossRef]
  7. Q. Yang, Opt. Commun. 238, 329 (2004). [CrossRef]
  8. M. Brunel, M. Vallet, G. Ropars, A. Le Floch, F. Bretenaker, G. Joulié, and J. C. Keromnes, Phys. Rev. A 55, 1391 (1997). [CrossRef]
  9. G. W. Baxter, J. M. Dawes, P. Decker, and D. S. Knowles, IEEE Photon. Technol. Lett. 8, 1015 (1996). [CrossRef]
  10. M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, and P. Thony, IEEE Photon. Technol. Lett. 13, 367 (2001). [CrossRef]
  11. M. Brunel and M. Vallet, Opt. Lett. 33, 2524 (2008). [CrossRef]
  12. U. Keller, Nature 424, 831 (2003). [CrossRef]
  13. V. Evtuhov and A. E. Siegman, Appl. Opt. 4, 142 (1965). [CrossRef]
  14. A. Le Floch and G. Stephan, C. R. Acad. Sci. B 277, 265 (1973).
  15. M. Vallet, M. Brunel, G. Ropars, A. Le Floch, and F. Bretenaker, Phys. Rev. A 56, 5121 (1997). [CrossRef]
  16. B. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, J. Opt. Soc. Am. B 17, 354 (2000). [CrossRef]
  17. K. Hartinger and R. A. Bartels, Opt. Lett. 31, 3526 (2006). [CrossRef]
  18. A. L. Smirl, X. Chen, and O. Buccafusca, Opt. Lett. 23, 1120 (1998). [CrossRef]
  19. M. Yamaki, K. Hoki, H. Kono, and Y. Fujimura, Chem. Phys. 347, 272 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited