OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 14 — Jul. 15, 2012
  • pp: 2865–2867

Buffer-gas-assisted polarization spectroscopy of Li6

Nozomi Ohtsubo, Takatoshi Aoki, and Yoshio Torii  »View Author Affiliations

Optics Letters, Vol. 37, Issue 14, pp. 2865-2867 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (206 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the demonstration of Doppler-free polarization spectroscopy of the D2 line of Li6 atoms. Counterintuitively, the presence of an Ar buffer gas, in a certain pressure range, causes a drastic enhancement of the polarization rotation signal. The observed dependence of the signal amplitude on the Ar buffer pressure and the pump laser power is reproduced by calculations based on simple rate equations. We performed stable laser frequency locking using a dispersion signal obtained by polarization spectroscopy for laser cooling of Li6 atoms.

© 2012 Optical Society of America

OCIS Codes
(020.2070) Atomic and molecular physics : Effects of collisions
(260.1440) Physical optics : Birefringence
(300.6210) Spectroscopy : Spectroscopy, atomic
(300.6460) Spectroscopy : Spectroscopy, saturation
(020.3320) Atomic and molecular physics : Laser cooling

ToC Category:

Original Manuscript: April 23, 2012
Manuscript Accepted: May 20, 2012
Published: July 10, 2012

Nozomi Ohtsubo, Takatoshi Aoki, and Yoshio Torii, "Buffer-gas-assisted polarization spectroscopy of Li6," Opt. Lett. 37, 2865-2867 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. A. Cornell and C. E. Wieman, Rev. Mod. Phys. 74, 875 (2002). [CrossRef]
  2. W. Ketterle, Rev. Mod. Phys. 74, 1131 (2002). [CrossRef]
  3. W. Ketterle and M. W. Zwierlein, arXiv:0801.2500v1 (2008).
  4. K. Dieckmann, C. A. Stan, S. Gupta, Z. Hadzibabic, C. H. Schunck, and W. Ketterle, Phys. Rev. Lett. 89, 203201 (2002). [CrossRef]
  5. M. Aymar and O. Dulieu, J. Chem. Phys. 122, 204302 (2005). [CrossRef]
  6. H. P. Buchler, E. Demler, M. Lukin, A. Micheli, N. Prokof’ev, G. Pupillo, and P. Zoller, Phys. Rev. Lett. 98, 4 (2007). [CrossRef]
  7. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, Appl. Phys. B 32, 145 (1983). [CrossRef]
  8. K. L. Corwin, Z. T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, Appl. Opt. 37, 3295 (1998). [CrossRef]
  9. C. Wieman and T. W. Hänsch, Phys. Rev. Lett. 36, 1170 (1976). [CrossRef]
  10. Y. Yoshikawa, T. Umeki, T. Mukae, Y. Torii, and T. Kuga, Appl. Opt. 42, 6645 (2003). [CrossRef]
  11. C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, J. Phys. B At. Mol. Opt. Phys. 35, 5141 (2002). [CrossRef]
  12. I. E. Olivares, A. E. Duarte, T. Lokajczyk, A. Dinklage, and F. J. Duarte, J. Opt. Soc. Am. B 15, 1932 (1998). [CrossRef]
  13. D. Budker, D. Kimball, and D. De Mille, Atomic Physics, 2nd ed. (Oxford, 2008).
  14. M. L. Harris, C. S. Adams, S. L. Cornish, I. C. McLeod, E. Tarleton, and I. G. Hughes, Phys. Rev. A 73, 062509 (2006). [CrossRef]
  15. For the cooling transition, the atoms that are spin polarized by the σ+ (σ−) pump beam interact predominantly with the σ+ (σ−) component of the probe beam if the saturation effect due to the pump beam is neglected. See, for example, [10].

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited