OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 37, Iss. 15 — Aug. 1, 2012
  • pp: 3018–3020

Offline estimation of decay time for an optical cavity with a low pass filter cavity model

Abhijit G. Kallapur, Toby K. Boyson, Ian R. Petersen, and Charles C. Harb  »View Author Affiliations


Optics Letters, Vol. 37, Issue 15, pp. 3018-3020 (2012)
http://dx.doi.org/10.1364/OL.37.003018


View Full Text Article

Enhanced HTML    Acrobat PDF (165 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This Letter presents offline estimation results for the decay-time constant for an experimental Fabry–Perot optical cavity for cavity ring-down spectroscopy (CRDS). The cavity dynamics are modeled in terms of a low pass filter (LPF) with unity DC gain. This model is used by an extended Kalman filter (EKF) along with the recorded light intensity at the output of the cavity in order to estimate the decay-time constant. The estimation results using the LPF cavity model are compared to those obtained using the quadrature model for the cavity presented in previous work by Kallapur et al. The estimation process derived using the LPF model comprises two states as opposed to three states in the quadrature model. When considering the EKF, this means propagating two states and a (2×2) covariance matrix using the LPF model, as opposed to propagating three states and a (3×3) covariance matrix using the quadrature model. This gives the former model a computational advantage over the latter and leads to faster execution times for the corresponding EKF. It is shown in this Letter that the LPF model for the cavity with two filter states is computationally more efficient, converges faster, and is hence a more suitable method than the three-state quadrature model presented in previous work for real-time estimation of the decay-time constant for the cavity.

© 2012 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(200.3050) Optics in computing : Information processing
(300.6360) Spectroscopy : Spectroscopy, laser

ToC Category:
Diffraction and Gratings

History
Original Manuscript: April 24, 2012
Revised Manuscript: June 12, 2012
Manuscript Accepted: June 13, 2012
Published: July 16, 2012

Citation
Abhijit G. Kallapur, Toby K. Boyson, Ian R. Petersen, and Charles C. Harb, "Offline estimation of decay time for an optical cavity with a low pass filter cavity model," Opt. Lett. 37, 3018-3020 (2012)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-37-15-3018


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. O’Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988). [CrossRef]
  2. B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, J. Appl. Phys. 83, 3991 (1998). [CrossRef]
  3. K. W. Busch and M. A. Busch, Cavity-Ringdown Spectroscopy. An Ultratrace-Absorption Measurement Technique, vol. 720 of ACS Symposium Series (American Chemical Society, 1999).
  4. T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, Rev. Sci. Instrum. 71, 347 (2000). [CrossRef]
  5. A. A. Istratov and O. F. Vyvenko, Rev. Sci. Instrum. 70, 1233 (1999). [CrossRef]
  6. M. Mazurenka, R. Wada, A. J. L. Shillings, T. J. A. Butler, J. M. Beames, and A. J. Orr-Ewing, Appl. Phys. B: Lasers Opt. 81, 135 (2005). [CrossRef]
  7. A. G. Kallapur, T. K. Boyson, I. R. Petersen, and C. C. Harb, in IEEE International Conference on Control Applications (CCA) (IEEE, 2011), p. 556.
  8. A. G. Kallapur, T. K. Boyson, I. R. Petersen, and C. C. Harb, Opt. Express 19, 6377 (2011). [CrossRef]
  9. M. A. Everest and D. B. Atkinson, Rev. Sci. Instrum. 79, 023108 (2008). [CrossRef]
  10. C. W. Gardiner and P. Zoller, Quantum Noise (Springer, 2000).
  11. H. A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics, 2nd ed. (Wiley-VCH, 2004).
  12. J. M. Herbelin, J. A. McKay, M. A. Kwok, R. H. Ueunten, D. S. Urevig, D. J. Spencer, and D. J. Benard, Appl. Opt. 19, 144 (1980). [CrossRef]
  13. R. Engeln, G. V. Helden, G. Berden, and G. Meijer, Chem. Phys. Lett. 262, 105 (1996). [CrossRef]
  14. Y. Bar-Shalom and X. Li, Estimation and Tracking: Principles, Techniques, and Software (Artech House, 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited