OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 15 — Aug. 1, 2012
  • pp: 3078–3080

Determination of complex modes in photonic crystal waveguides using the phase variation in characteristic coefficients

Amir Hossein Hosseinnia, Amin Khavasi, Peyman Sarrafi, and Khashayar Mehrany  »View Author Affiliations

Optics Letters, Vol. 37, Issue 15, pp. 3078-3080 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (251 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An efficient frequency-domain method, the phase variation monitoring (PVM) method, is proposed to determine the electromagnetic eigenmodes in two-dimensional photonic crystal waveguides. The proposed method is based on monitoring the reflection and transmission coefficients of incident plane waves. It is successfully applied to an illustrative line-defect photonic crystal waveguide and proved to be capable of calculating the in-plane leakage through the finite-size photonic crystal surrounding the line-defect. Calculation of the leakage loss is not only important for proper understanding of wave propagation within the defect but also for its significant role in applications of photonic structures.

© 2012 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.5296) Integrated optics : Photonic crystal waveguides
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Integrated Optics

Original Manuscript: March 19, 2012
Revised Manuscript: May 23, 2012
Manuscript Accepted: June 4, 2012
Published: July 18, 2012

Amir Hossein Hosseinnia, Amin Khavasi, Peyman Sarrafi, and Khashayar Mehrany, "Determination of complex modes in photonic crystal waveguides using the phase variation in characteristic coefficients," Opt. Lett. 37, 3078-3080 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987). [CrossRef]
  2. J. M. Lourtioz, H. Benisty, V. Berger, J. M. Gerard, D. Maystre, and A. Tchelnokov, Photonic Crystals: Towards Nanoscale Photonic Devices, 2nd ed. (Springer-Verlag, 2008).
  3. A. Scherer, O. Painter, J. Vuckovic, M. Loncar, and T. Yoshie, IEEE Trans. Nanotechnol. 1, 4 (2002). [CrossRef]
  4. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time-Domain Method(Artech House, 2000).
  5. S. Shi, C. Chen, and D. W. Prather, Appl. Phys. Lett. 86, 043104 (2005). [CrossRef]
  6. R. E. Smith, S. N. Houde-Walter, and G. W. Forbes, IEEE J. Quantum Electron. 28, 1520 (1992). [CrossRef]
  7. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, J. Lightwave Technol. 17, 929 (1999). [CrossRef]
  8. M. Nevière and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design (CRC, 2003).
  9. L. Li, J. Opt. Soc. Am. A 13, 1024 (1996). [CrossRef]
  10. A. Khavasi, A. K. Jahromi, and K. Mehrany, J. Opt. Soc. Am. A 25, 1564 (2008). [CrossRef]
  11. X. Li and R. T. Deck, Appl. Phys. Lett. 66, 130 (1995). [CrossRef]
  12. P. Sarrafi and K. Mehrany, J. Opt. Soc. Am. B 26, 169(2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited