OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 15 — Aug. 1, 2012
  • pp: 3144–3146

Exploring spatial resolution in high-sensitivity nanogap quantum dot photodetectors

Ludan Huang, Matthew Strathman, and Lih Y. Lin  »View Author Affiliations

Optics Letters, Vol. 37, Issue 15, pp. 3144-3146 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (298 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a new approach to experimentally determine the spatial resolution of nanogap quantum dot (QD) photodetectors consist of solution-processed QDs. Cross talk between a pair of closely positioned QD photodetectors was measured. Devices with 200 nm spacing exhibit low crosstalk of 8.4%. A single QD photodetector also shows high sensitivity, with a lowest detectable optical intensity of 95.3fW/μm2 achieved. The results show the potential of nanogap QD photodetectors for applications in high-density imaging/sensing arrays.

© 2012 Optical Society of America

OCIS Codes
(040.3780) Detectors : Low light level
(040.5160) Detectors : Photodetectors
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(160.4236) Materials : Nanomaterials
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:

Original Manuscript: May 3, 2012
Revised Manuscript: June 27, 2012
Manuscript Accepted: June 28, 2012
Published: July 23, 2012

Ludan Huang, Matthew Strathman, and Lih Y. Lin, "Exploring spatial resolution in high-sensitivity nanogap quantum dot photodetectors," Opt. Lett. 37, 3144-3146 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002). [CrossRef]
  2. G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, Nature 442, 180 (2006). [CrossRef]
  3. G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, Nat. Photon. 1, 531 (2007). [CrossRef]
  4. M. C. Hegg, M. P. Horning, T. Baehr-Jones, M. Hochberg, and L. Y. Lin, Appl. Phys. Lett. 96, 101118 (2010). [CrossRef]
  5. L. J. Willis, J. A. Fairfield, T. Dadosh, M. D. Fischbein, and M. Drndic, Nano Lett. 9, 4191 (2009). [CrossRef]
  6. M. C. Hegg and L. Y. Lin, Opt. Express 15, 17163 (2007). [CrossRef]
  7. G. Agranov, V. Berezin, and R. H. Tsai, IEEE Trans. Electron Devices 50, 4 (2003). [CrossRef]
  8. V. J. Porter, S. Geyer, E. Halpert, M. Kastner, and M. Bawendi, J. Phys. Chem. C 112, 2308 (2008). [CrossRef]
  9. S. Biswas, D. J. Gosztola, G. P. Wiederrecht, M. A. Stroscio, and M. Dutta, J. Electron. Mater. 41, 524 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited