Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Quantifying tissue microvasculature with speckle variance optical coherence tomography

Not Accessible

Your library or personal account may give you access

Abstract

In this Letter, we demonstrate high resolution, three-dimensional optical imaging of in vivo blood vessel networks using speckle variance optical coherence tomography, and the quantification of these images through the development of biologically relevant metrics using image processing and segmentation techniques. Extracted three-dimensional metrics include vascular density, vessel tortuosity, vascular network fractal dimension, and tissue vascularity. We demonstrate the ability of this quantitative imaging approach to characterize normal and tumor vascular networks in a preclinical animal model and the potential for quantitative, longitudinal vascular treatment response monitoring.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Speckle variance detection of microvasculature using swept-source optical coherence tomography

Adrian Mariampillai, Beau A. Standish, Eduardo H. Moriyama, Mamta Khurana, Nigel R. Munce, Michael K. K. Leung, James Jiang, Alex Cable, Brian C. Wilson, I. Alex Vitkin, and Victor X. D. Yang
Opt. Lett. 33(13) 1530-1532 (2008)

Quantifying the vascular response to ischemia with speckle variance optical coherence tomography

Kristin M. Poole, Devin R. McCormack, Chetan A. Patil, Craig L. Duvall, and Melissa C. Skala
Biomed. Opt. Express 5(12) 4118-4130 (2014)

Speckle variance optical coherence tomography of the rodent spinal cord: in vivo feasibility

David W. Cadotte, Adrian Mariampillai, Adam Cadotte, Kenneth K. C. Lee, Tim-Rasmus Kiehl, Brian C. Wilson, Michael G. Fehlings, and Victor X. D. Yang
Biomed. Opt. Express 3(5) 911-919 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved