OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 15 — Aug. 1, 2012
  • pp: 3267–3269

On the quantum-channel capacity for orbital angular momentum-based free-space optical communications

Yequn Zhang, Ivan B. Djordjevic, and Xin Gao  »View Author Affiliations

Optics Letters, Vol. 37, Issue 15, pp. 3267-3269 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (252 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Inspired by recent demonstrations of orbital angular momentum-(OAM)-based single-photon communications, we propose two quantum-channel models: (i) the multidimensional quantum-key distribution model and (ii) the quantum teleportation model. Both models employ operator-sum representation for Kraus operators derived from OAM eigenkets transition probabilities. These models are highly important for future development of quantum-error correction schemes to extend the transmission distance and improve date rates of OAM quantum communications. By using these models, we calculate corresponding quantum-channel capacities in the presence of atmospheric turbulence.

© 2012 Optical Society of America

OCIS Codes
(260.0260) Physical optics : Physical optics
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: December 23, 2011
Revised Manuscript: June 26, 2012
Manuscript Accepted: June 29, 2012
Published: July 31, 2012

Yequn Zhang, Ivan B. Djordjevic, and Xin Gao, "On the quantum-channel capacity for orbital angular momentum-based free-space optical communications," Opt. Lett. 37, 3267-3269 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Paterson, Phys. Rev. Lett. 94, 153901 (2005). [CrossRef]
  2. G. A. Tyler and R. W. Boyd, Opt. Lett. 34, 142 (2009). [CrossRef]
  3. Y. Zhang, G. Zhao, J. Xu, and J. Cuang, in 2009 Conference on Communications and Mobile Computing (IEEE, 2009), p. 477.
  4. A. Dudley, M. Nock, T. Konrad, F. S. Roux, and A. Forbes, Opt. Express 18, 22789 (2010). [CrossRef]
  5. J. J.-L. Ting, Phys. Lett. A 259, 349 (1999). [CrossRef]
  6. I. B. Djordjevic, Quantum Information Processing and Quantum Error Correction (Elsevier/Academic, 2012).
  7. Y. Kondo, M. Nakahara, S. Tanimura, S. Kitajima, C. Uchiyama, and F. Shibata, J. Phys. Soc. Jpn. 76, 074002 (2007). [CrossRef]
  8. M. Malik, M. O’Sullivan, B. Rodenburg, M. Mirhosseini, J. Leach, M. P. J. Lavery, M. J. Padgett, and R. W. Boyd, Opt. Express 20, 13195 (2012). [CrossRef]
  9. V. P. Aksenov and Ch. E. Pogutsa, Quantum Electron. 38, 343 (2008). [CrossRef]
  10. S. M. Zhao, J. Leach, L. Y. Gong, J. Ding, and B. Y. Zheng, Opt. Express 20, 452 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited