OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 16 — Aug. 15, 2012
  • pp: 3297–3299

Metal-cavity quantum-dot lasers with enhanced thermal performance

A. Matsudaira, C.-Y. Lu, T. O’Brien, and S. L. Chuang  »View Author Affiliations

Optics Letters, Vol. 37, Issue 16, pp. 3297-3299 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (468 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We designed, fabricated, and characterized thermal performances of Fabry-Pérot quantum-dot lasers with both metal-coated and conventional dielectric waveguides. With proper design, metals, such as Ag, Au, Cu, and Al can function as a low loss waveguide wall as well as an efficient heat remover. Metal-cavity waveguide lasers showed excellent threshold and characteristic temperature working above 120 °C, while dielectric waveguide lasers ceased operation near 80 °C under the same conditions. The thermal analysis of these lasers showed that metal-cavity lasers have approximately 1.5 times higher thermal conductivity compared with those of the dielectric lasers. We believe that the metal-coating of waveguides and the proper selection of metal efficiently remove the heat from the active region and enable stable lasing operation at high temperature.

© 2012 Optical Society of America

OCIS Codes
(140.6810) Lasers and laser optics : Thermal effects
(230.7370) Optical devices : Waveguides
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 3, 2012
Manuscript Accepted: June 4, 2012
Published: August 3, 2012

A. Matsudaira, C.-Y. Lu, T. O’Brien, and S. L. Chuang, "Metal-cavity quantum-dot lasers with enhanced thermal performance," Opt. Lett. 37, 3297-3299 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Arakawa and H. Sasaki, Appl. Phys. Lett. 40, 939 (1982). [CrossRef]
  2. A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, Electron. Lett. 38, 1104 (2002). [CrossRef]
  3. D. Bimberg and N. Ledentsov, J. Phys. Condens. Matter 15, R1063 (2003). [CrossRef]
  4. S. Fathpour, Z. Mi, and P. Bhattacharya, J. Phys. D 38, 2103 (2005). [CrossRef]
  5. M. Ishida, M. Sugawara, T. Yamamoto, N. Hatori, H. Ebe, Y. Nakata, and Y. Arakawa, J. Appl. Phys. 101, 013108 (2007). [CrossRef]
  6. S. Fathpour, Z. Mi, and P. Bhattacharya, Appl. Phys. Lett. 85, 5164 (2004). [CrossRef]
  7. T. J. Badcock, R. J. Royce, D. J. Mowbray, M. S. Skolnick, H. Y. Liu, M. Hopkinson, K. M. Groom, and Q. Jiang, Appl. Phys. Lett. 90, 111102 (2007). [CrossRef]
  8. H. T. Miyazaki and Y. Kurokawa, Phys. Rev. Lett. 96, 097401 (2006). [CrossRef]
  9. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, Opt. Express 17, 11107 (2009). [CrossRef]
  10. S. W. Chang, T. R. Lin, and S. L. Chuang, Opt. Express 18, 15039 (2010). [CrossRef]
  11. C. Y. Lu, S. W. Chuang, S. H. Yang, and S. L. Chuang, Appl. Phys. Lett. 95, 233507 (2009). [CrossRef]
  12. G. E. Chang, C. Y. Lu, S. H. Yang, and S. L. Chuang, Opt. Lett. 35, 2373 (2010). [CrossRef]
  13. S. L. Chuang, Physics of Photonic Devices, 2nd ed. (Wiley, 1995).
  14. J. Kim and S. L. Chuang, IEEE J. Quantum Electron. 42, 942 (2006). [CrossRef]
  15. J. S. Manning, J. Appl. Phys. 52, 3179 (1981). [CrossRef]
  16. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).
  17. C. Y. Lu, S. L. Chuang, A. Mutig, and D. Bimberg, Opt. Lett. 36, 2447 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited