OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 16 — Aug. 15, 2012
  • pp: 3336–3338

Ultrasonic sensor employing two cascaded phase-shifted fiber Bragg gratings suitable for multiplexing

Qi Wu and Yoji Okabe  »View Author Affiliations

Optics Letters, Vol. 37, Issue 16, pp. 3336-3338 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (598 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An ultrasonic sensor based on two cascaded phase-shifted fiber Bragg gratings (PS-FBGs) is proposed and demonstrated. In place of an external cavity laser, a broadband amplified spontaneous emission light source is used to demonstrate multiplexing ability suitable for sensor networks. The system has a high sensitivity to ultrasonic waves generated by a PZT actuator placed 7.5 cm away from the PS-FBG, because of the steep slope in the center of the PS-FBG spectrum. A second advantage of the phase shift is to reduce the effective sensor length, leading to the achievement of broadband characteristics. A pencil lead break test was performed and all results are compared to a traditional PZT sensor.

© 2012 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 21, 2012
Revised Manuscript: June 27, 2012
Manuscript Accepted: July 13, 2012
Published: August 6, 2012

Qi Wu and Yoji Okabe, "Ultrasonic sensor employing two cascaded phase-shifted fiber Bragg gratings suitable for multiplexing," Opt. Lett. 37, 3336-3338 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Wild and S. Hinckley, Sensors J. 8, 1184 (2008). [CrossRef]
  2. H. Tsuda, E. Sato, T. Nakajima, H. Nakamura, T. Arakawa, H. Shiono, M. Minato, H. Kurabayashi, and A. Sato, Opt. Lett. 34, 2942 (2009). [CrossRef]
  3. J. R. Lee and H. Tsuda, Scripta Mater. 53, 1181 (2005). [CrossRef]
  4. A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 304 (2005). [CrossRef]
  5. A. Rosenthal, D. Razansky, and V. Ntziachristos, Opt. Lett. 36, 1833 (2011). [CrossRef]
  6. Y. Okabe, J. Kuwahara, K. Natori, N. Takeda, T. Ogisu, S. Kojima, and S. Komatsuzaki, Smart Mater. Struct. 16, 1370 (2007). [CrossRef]
  7. I. Perez, H. L. Cui, and E. Udd, Proc. SPIE 209, 4328 (2001). [CrossRef]
  8. A. I. Azmi, D. Sen, W. Sheng, J. Canning, and G. D. Peng, J. Lightwave Technol. 29, 3453 (2011). [CrossRef]
  9. P. Niewczas, A. J. Willshire, L. Dziuda, and J. R. McDonald, IEEE Trans. Instrum. Meas. 53, 1192 (2004). [CrossRef]
  10. A. B. Lobo Ribeiro, L. A. Ferreira, J. L. Santos, and D. A. Jackson, Appl. Opt. 36, 934 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited