OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 16 — Aug. 15, 2012
  • pp: 3423–3425

In vivo frequency domain optoacoustic tomography

Stephan Kellnberger, Nikolaos C. Deliolanis, Daniel Queirós, George Sergiadis, and Vasilis Ntziachristos  »View Author Affiliations

Optics Letters, Vol. 37, Issue 16, pp. 3423-3425 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (725 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optoacoustic imaging has been primarily implemented in the time domain, i.e., using ultrashort nanosecond laser pulses for illumination. Alternatively, frequency domain optoacoustic imaging can be performed when employing amplitude modulated light sources. We present herein a tomographic implementation of optoacoustic imaging using a linear frequency modulated laser source. The method developed demonstrated the ability to produce tomographic images of optical absorbing phantoms and in vivo images, by enabling visualization of the mouse tail following ICG injection.

© 2012 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5120) Medical optics and biotechnology : Photoacoustic imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: May 15, 2012
Revised Manuscript: July 2, 2012
Manuscript Accepted: July 2, 2012
Published: August 10, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Stephan Kellnberger, Nikolaos C. Deliolanis, Daniel Queirós, George Sergiadis, and Vasilis Ntziachristos, "In vivo frequency domain optoacoustic tomography," Opt. Lett. 37, 3423-3425 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Buehler, E. Herzog, D. Razansky, and V. Ntziachristos, Opt. Lett. 35, 2475 (2010). [CrossRef]
  2. S. A. Telenkov and A. Mandelis, J. Biomed. Opt. 11, 044006 (2006). [CrossRef]
  3. S. A. Telenkov, A. Mandelis, B. Lashkari, and M. Forcht, J. Appl. Phys. 105, 102029 (2009). [CrossRef]
  4. B. E. Bouma, S. H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, Curr. Opin. Biotechnol. 20, 111 (2009). [CrossRef]
  5. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, 1988).
  6. D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, Proc. Natl. Acad. Sci. USA 91, 4887 (1994). [CrossRef]
  7. M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, Opt. Lett. 20, 426 (1995). [CrossRef]
  8. R. Ma, A. Taruttis, V. Ntziachristos, and D. Razansky, Opt. Express 17, 21414 (2009). [CrossRef]
  9. A. Rosenthal, D. Razansky, and V. Ntziachristos, IEEE Trans. Med. Imaging 29, 1275 (2010). [CrossRef]
  10. M. I. Skolnik, Radar Handbook, 3rd ed. (McGraw Hill, 2008).
  11. M. L. J. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, J. Appl. Physiol. 40, 575 (1976).
  12. D. Razansky, C. Vinegoni, and V. Ntziachristos, Opt. Lett. 32, 2891 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited