OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 16 — Aug. 15, 2012
  • pp: 3453–3455

Adjoint variable method for two-dimensional plasmonic structures

O. S. Ahmed, M. H. Bakr, X. Li, and T. Nomura  »View Author Affiliations

Optics Letters, Vol. 37, Issue 16, pp. 3453-3455 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (295 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present, for the first time, an adjoint variable method (AVM) for wideband sensitivity analysis of dispersive materials. The time domain transmission line modeling technique is exploited to calculate the response and its sensitivities with respect to all the designable parameters using at most one extra simulation. A z-domain representation of dispersive materials is utilized in the derivation of this technique. Our approach is illustrated through sensitivity analysis of a two-dimensional teeth-shaped plasmonic resonator. The AVM sensitivities are compared with the accurate and expensive finite difference approach and good agreement is achieved. This theory can be extended to other dispersive materials and dispersive metamaterials as well.

© 2012 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(240.6680) Optics at surfaces : Surface plasmons
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: April 27, 2012
Revised Manuscript: June 27, 2012
Manuscript Accepted: July 12, 2012
Published: August 13, 2012

O. S. Ahmed, M. H. Bakr, X. Li, and T. Nomura, "Adjoint variable method for two-dimensional plasmonic structures," Opt. Lett. 37, 3453-3455 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Ozbay, Science 311, 189 (2006). [CrossRef]
  2. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. 108, 494 (2008). [CrossRef]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003). [CrossRef]
  4. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, Nano Lett. 8, 4391 (2008). [CrossRef]
  5. L. de Menezes and W. J. R. Hoefer, IEEE Trans. Microw. Theory Technol. 44, 854 (1996). [CrossRef]
  6. M. H. Bakr and N. K. Nikolova, IEEE Trans. Microw. Theory Technol. 52, 554 (2004). [CrossRef]
  7. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  8. X.-S. Lin and X.-G. Huang, Opt. Lett. 33, 2874 (2008). [CrossRef]
  9. O. S. Ahmed, M. A. Swillam, M. H. Bakr, and X. Li, Opt. Express 18, 21784 (2010). [CrossRef]
  10. J. Paul, C. Christopoulos, and D. W. P. Thomas, IEEE Trans. Antennas Propag. 47, 1528 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited