OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 37, Iss. 17 — Sep. 1, 2012
  • pp: 3594–3596

Subwavelength polarization rotators via double-layer metal hole arrays

X. Xiao, Y. Li, B. Hou, B. Zhou, and W. Wen  »View Author Affiliations


Optics Letters, Vol. 37, Issue 17, pp. 3594-3596 (2012)
http://dx.doi.org/10.1364/OL.37.003594


View Full Text Article

Enhanced HTML    Acrobat PDF (401 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that the polarization of linearly polarized light can be rotated an arbitrary angle by double-layer metal hole array structures in a subwavelength regime. The transmitted light with the rotated polarization, however, remains of nearly the same strength as the incident field at particular frequencies. The mechanism can be attributed to the subwavelength feature of the rectangular holes, and the tangential guiding modes between layers modulated by the orientation of the holes. The structures have potential applications as polarization rotators in a broad frequency range covering from terahertz (THz) to infrared frequencies.

© 2012 Optical Society of America

OCIS Codes
(240.6690) Optics at surfaces : Surface waves
(260.3910) Physical optics : Metal optics
(260.5430) Physical optics : Polarization
(160.3918) Materials : Metamaterials

ToC Category:
Physical Optics

History
Original Manuscript: June 4, 2012
Revised Manuscript: July 19, 2012
Manuscript Accepted: July 20, 2012
Published: August 24, 2012

Citation
X. Xiao, Y. Li, B. Hou, B. Zhou, and W. Wen, "Subwavelength polarization rotators via double-layer metal hole arrays," Opt. Lett. 37, 3594-3596 (2012)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-37-17-3594


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Svirko, N. Zheludev, and M. Osipov, Appl. Phys. Lett. 78, 498 (2001). [CrossRef]
  2. A. Rogacheva, V. Fedotov, A. Schwanecke, and N. Zheludev, Phys. Rev. Lett. 97, 177401 (2006). [CrossRef]
  3. R. Zhao, L. Zhang, J. Zhou, Th. Koschny, and C. M. Soukoulis, Phys. Rev. B 83, 035105 (2011). [CrossRef]
  4. N. Liu, H. Liu, S. N. Zhu, and H. Giessen, Nat. Photon. 3, 157 (2009). [CrossRef]
  5. J. Xu, T. Li, F. F. Lu, S. M. Wang, and S. N. Zhu, Opt. Express 19, 748 (2011). [CrossRef]
  6. F. Miyamaru and M. Hangyo, Appl. Phys. Lett. 89, 211105 (2006). [CrossRef]
  7. J. M. Hao, Y. Yuan, L. X. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, Phys. Rev. Lett. 99, 063908(2007). [CrossRef]
  8. R. Gordon, A. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. Kavanagh, Phys. Rev. Lett. 92, 037401 (2004). [CrossRef]
  9. T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. A. Zhang, Appl. Phys. Lett. 93, 021110 (2008). [CrossRef]
  10. M. Beruete, M. Navarro-Cia, M. Sorolla, and I. Campillo, J. Appl. Phys. 103, 053102 (2008). [CrossRef]
  11. S. V. Zhukovsky, A. V. Novitsky, and V. M. Galynsky, Opt. Lett. 34, 1988 (2009). [CrossRef]
  12. B. Bai, J. Laukkanen, A. Lehmuskero, and J. Turunen, Phys. Rev. B 81, 115424 (2010). [CrossRef]
  13. A. Mary, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, Phys. Rev. Lett. 101, 103902 (2008). [CrossRef]
  14. A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, Phys. Rev. B 80, 165431 (2009). [CrossRef]
  15. T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, Appl. Phys. Lett. 97, 261113 (2010). [CrossRef]
  16. Z. Marcet, Z. H. Hang, C. T. Chan, I. Kravchenko, J. Bower, R. Cirelli, F. Klemens, W. Mansfield, J. Miner, C. S. Pai, and H. B. Chan, Opt. Lett. 35, 2124 (2010). [CrossRef]
  17. E. N. Economou, Phys. Rev. 182, 539 (1969). [CrossRef]
  18. P. Sheng, R. Stepleman, and P. Sanda, Phys. Rev. B 26, 2907 (1982). [CrossRef]
  19. F. García-Vidal, L. Martín-Moreno, T. Ebbesen, and L. Kuipers, Rev. Mod. Phys. 82, 729 (2010). [CrossRef]
  20. The polarization of the light just passing through the upper plate is perpendicular to the longer sides of the holes in it, which means the polarization is 5° above the x axis for the case (θ,φ)=(5°,90°). The final polarization for the case rotating clockwise is along the minus y-direction, which means the polarization is rotated by 180°−|φ−θ|=95°, while that for the case rotating anticlockwise is along the positive y-direction, which means the rotated angle is |φ−θ|=85°. Consequently, the larger the difference between θ and φ becomes, the smaller the difference of the angles rotating clockwise and anticlockwise is.
  21. X. Liu, S. MacNaughton, D. Shrekenhamer, H. Tao, S. Selvarasah, A. Totachawattana, R. Averitt, M. Dokmeci, S. Sonkusale, and W. Padilla, Appl. Phys. Lett. 96, 011906 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited