OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 18 — Sep. 15, 2012
  • pp: 3888–3890

Highly efficient dual-wavelength laser operation of cryo-cooled resonantly (in-band) pumped Ho 3 + : YVO 4 laser

G. A. Newburgh, Z. Fleischman, and M. Dubinskii  »View Author Affiliations

Optics Letters, Vol. 37, Issue 18, pp. 3888-3890 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (289 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have demonstrated a CW, multiwatt, dual-wavelength cryogenically cooled, resonantly (in-band) pumped Ho 3 + : YVO 4 laser with nearly quantum-defect-limited performance. The Ho 3 + ( 2 % ) : YVO 4 gain element, which was maintained at 80 K and pumped by a Tm-fiber laser at 1966 nm, emitted at wavelengths of either 2053 or 2068 nm, or both at the same time, depending on the outcoupling loss and the pump power. We have achieved laser operation with a maximum slope efficiency of 92 % . This is, to the best of our knowledge, the highest slope efficiency ever demonstrated for any Ho 3 + -doped laser.

© 2012 Optical Society of America

OCIS Codes
(140.3460) Lasers and laser optics : Lasers
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 2, 2012
Revised Manuscript: August 9, 2012
Manuscript Accepted: August 13, 2012
Published: September 14, 2012

G. A. Newburgh, Z. Fleischman, and M. Dubinskii, "Highly efficient dual-wavelength laser operation of cryo-cooled resonantly (in-band) pumped Ho3+:YVO4 laser," Opt. Lett. 37, 3888-3890 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. W. Kang, H. Lee, J. Petersen, J. H. Teichman, and A. J. Welch, Proc. SPIE 6078, 607815 (2006). [CrossRef]
  2. T. M. Taczak and D. K. Killinger, Appl. Opt. 37, 8460(1998). [CrossRef]
  3. S. M. Hannon and J. A. Thomson, J. Mod. Opt. 41, 2175 (1994). [CrossRef]
  4. G. D. Wilkins, Wright Laboratories Tech. Rep. WL-TR-96-1017 (1996).
  5. W. Shi, Y. J. Ding, and P. G. Schunemann, Opt. Commun. 233, 183 (2004). [CrossRef]
  6. N. Ter-Gabrielyan, V. Fromzel, T. Lukasiewicz, W. Ryba-Romanowski, and M. Dubinskii, Opt. Lett. 36, 1218 (2011). [CrossRef]
  7. A. I. Zagumennyi, P. A. Popov, F. Zerouk, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, Quantum Electron. 38, 227 (2008). [CrossRef]
  8. G. A. Newburgh and M. Dubinskii, Proc. SPIE 8039, 803905 (2011). [CrossRef]
  9. G. Li, B.-Q. Yao, P.-B. Meng, Y.-L. Ju, and Y.-Z. Wang, Opt. Lett. 36, 2934 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited