OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 18 — Sep. 15, 2012
  • pp: 3915–3917

Plasmonic wavelength splitter based on a large-area dielectric grating and white light illumination

Jae-Chul Song, Woo Kyung Jung, Nak-Hyeon Kim, and Kyung Min Byun  »View Author Affiliations

Optics Letters, Vol. 37, Issue 18, pp. 3915-3917 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (356 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optical process by which transmission wavelengths can be divided selectively by changing a resonance condition of surface plasmons (SPs) is demonstrated. When white light is incident to an SP resonance substrate with a dielectric grating, SP waves are excited at resonance and transmitted into the air via diffraction by a large-area grating pattern fabricated by nanoimprint lithography. While only a limited range of certain wavelengths is allowed to transmit, the peak transmission wavelength can be tuned continuously in the visible band. We also show that multiple wavelengths are transmitted into different directions simultaneously by using a wedge-shaped white light.

© 2012 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: June 27, 2012
Revised Manuscript: August 1, 2012
Manuscript Accepted: August 16, 2012
Published: September 14, 2012

Jae-Chul Song, Woo Kyung Jung, Nak-Hyeon Kim, and Kyung Min Byun, "Plasmonic wavelength splitter based on a large-area dielectric grating and white light illumination," Opt. Lett. 37, 3915-3917 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Reather, Excitation of Plasmons and Interband Transitions by Electrons (Springer, 1980).
  2. Y.-C. Chang, H.-W. Chen, and S.-H. Chang, IEEE J. Sel. Top. Quantum Electron. 14, 1536 (2008). [CrossRef]
  3. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, Nature Nanotechnol. 2, 515 (2007). [CrossRef]
  4. N. N. Lal, B. F. Soares, J. K. Sinha, F. Huang, S. Mahajan, P. N. Bartlett, N. C. Greenham, and J. J. Baumberg, Opt. Express 19, 11256 (2011). [CrossRef]
  5. C. Ge, M. Lu, Y. Tan, and B. T. Cunningham, Opt. Express 19, 5086 (2011). [CrossRef]
  6. S. V. Boriskina and L. Dal Negro, Opt. Lett. 35, 538 (2010). [CrossRef]
  7. I. S. Maksymov, A. R. Davoyan, A. E. Miroshnichenko, C. Simovski, P. Belov, and Y. S. Kivshar, Opt. Commun. 285, 821 (2012). [CrossRef]
  8. A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivshar, Phys. Status Solidi 5, 347 (2011). [CrossRef]
  9. R. S. Pavlov, A. G. Curto, and N. F. van Hulst, Opt. Commun. 285, 3334 (2012). [CrossRef]
  10. C. Simovski and O. Luukkonen, Opt. Commun. 285, 3397 (2012). [CrossRef]
  11. S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, Opt. Lett. 28, 1870 (2003). [CrossRef]
  12. K. M. Byun, S. J. Kim, and D. Kim, Appl. Opt. 46, 5703 (2007). [CrossRef]
  13. M. Ozaki, J. Kato, and S. Kawata, Science 332, 218 (2011). [CrossRef]
  14. S. H. Choi, S. J. Kim, and K. M. Byun, Appl. Opt. 48, 2924 (2009). [CrossRef]
  15. A. Boltasseva, J. Opt. A: Pure Appl. Opt. 11, 114001 (2009). [CrossRef]
  16. L. Li, J. Opt. Soc. Am. A 10, 2581 (1993). [CrossRef]
  17. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited