OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 19 — Oct. 1, 2012
  • pp: 3993–3995

Simultaneous broadband microwave downconversion and programmable complex filtering by optical frequency comb shaping

Victor Torres-Company, Daniel E. Leaird, and Andrew M. Weiner  »View Author Affiliations

Optics Letters, Vol. 37, Issue 19, pp. 3993-3995 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (353 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High-repetition-rate optical frequency combs can act as broadband photonic mixers and downconvert a microwave signal to an intermediate frequency (IF) band so that it becomes accessible with high-speed electronics. In this Letter, we show that with line-by-line pulse shaping and dispersive propagation, the photonic mixer can simultaneously perform programmable multitap complex-coefficient-filtering within the IF band. This solution opens new possibilities for microwave signal processing by combining the flexibility of optoelectronic frequency comb technology with high-speed analog-to-digital converters.

© 2012 Optical Society of America

OCIS Codes
(320.5540) Ultrafast optics : Pulse shaping
(070.2615) Fourier optics and signal processing : Frequency filtering
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Fourier Optics and Signal Processing

Original Manuscript: June 7, 2012
Revised Manuscript: August 8, 2012
Manuscript Accepted: August 16, 2012
Published: September 20, 2012

Victor Torres-Company, Daniel E. Leaird, and Andrew M. Weiner, "Simultaneous broadband microwave downconversion and programmable complex filtering by optical frequency comb shaping," Opt. Lett. 37, 3993-3995 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Capmany, B. Ortega, and D. Pastor, J. Lightwave Technol. 24, 201 (2006). [CrossRef]
  2. J. Capmany and D. Novak, Nat. Photon. 1, 319 (2007). [CrossRef]
  3. H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, IEEE J. Sel. Top. Quantum Electron. 6, 1325 (2000). [CrossRef]
  4. E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microwave Theor. Tech. 58, 3269 (2010). [CrossRef]
  5. V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, Nat. Photon. 6, 186 (2012). [CrossRef]
  6. M. H. Song, V. Torres-Company, A. J. Metcalf, and A. M. Weiner, Opt. Lett. 37, 845 (2012). [CrossRef]
  7. G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulner, IEEE Trans. Microwave Theor. Tech. 41, 2383 (1993). [CrossRef]
  8. V. R. Pagan, B. M. Haas, and T. E. Murphy, Opt. Express 19, 883 (2011). [CrossRef]
  9. A. K. M. Lam, M. Fairburn, and A. F. Jaefer, IEEE Trans. Microwave Theor. Tech. 54, 240 (2006). [CrossRef]
  10. K.-Y. Tu, M. S. Rasras, D. M. Gill, S. S. Patel, Y.-K. Chen, A. E. White, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, J. Lightwave Technol. 28, 3019 (2010). [CrossRef]
  11. P. W. Juodawlkis, J. J. Hargreaves, R. D. Younger, G. W. Titi, and J. C. Twichell, J. Lightwave Technol. 21, 3116 (2003). [CrossRef]
  12. Y. Zhao, X. Pang, L. Deng, X. Yu, X. Zheng, and I. T. Monroy, IEEE Photon. Technol. Lett. 24, 16 (2012). [CrossRef]
  13. S. Xiao, L. Hollberg, N. R. Newbury, and S. A. Diddams, Opt. Express 16, 8498 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited